All Publications

  • Robust design of topology-optimized metasurfaces OPTICAL MATERIALS EXPRESS Wang, E. W., Sell, D., Phan, T., Fan, J. A. 2019; 9 (2): 469–82
  • High-efficiency, large-area, topology-optimized metasurfaces. Light, science & applications Phan, T. n., Sell, D. n., Wang, E. W., Doshay, S. n., Edee, K. n., Yang, J. n., Fan, J. A. 2019; 8: 48


    Metasurfaces are ultrathin optical elements that are highly promising for constructing lightweight and compact optical systems. For their practical implementation, it is imperative to maximize the metasurface efficiency. Topology optimization provides a pathway for pushing the limits of metasurface efficiency; however, topology optimization methods have been limited to the design of microscale devices due to the extensive computational resources that are required. We introduce a new strategy for optimizing large-area metasurfaces in a computationally efficient manner. By stitching together individually optimized sections of the metasurface, we can reduce the computational complexity of the optimization from high-polynomial to linear. As a proof of concept, we design and experimentally demonstrate large-area, high-numerical-aperture silicon metasurface lenses with focusing efficiencies exceeding 90%. These concepts can be generalized to the design of multifunctional, broadband diffractive optical devices and will enable the implementation of large-area, high-performance metasurfaces in practical optical systems.

    View details for DOI 10.1038/s41377-019-0159-5

    View details for PubMedID 31149333

    View details for PubMedCentralID PMC6538635

  • Impact of doping on bonding energy hierarchy and melting of phase change materials JOURNAL OF APPLIED PHYSICS Liu, J., Wang, E., Zhao, Y., Xu, X., Moon, J., Anantram, M. P. 2018; 124 (9)

    View details for DOI 10.1063/1.5039831

    View details for Web of Science ID 000444042800012

  • Ultra-High-Efficiency Anomalous Refraction with Dielectric Metasurfaces ACS PHOTONICS Sell, D., Yang, J., Wang, E. W., Phan, T., Doshay, S., Fan, J. A. 2018; 5 (6): 2402–7