All Publications


  • Light-Inducible Generation of Membrane Curvature in Live Cells with Engineered Bar Domain Proteins Jones, T., Cui, B. CELL PRESS. 2020: 610A
  • Large Glycocalyx Proteins are Excluded from the Interface between Cell Membrane and Vertical Nanostructures Lu, C., Jones, T., Pedram, K., Bertozzi, C., Paszek, M., Cui, B. CELL PRESS. 2020: 396A
  • Light-Inducible Generation of Membrane Curvature in Live Cells with Engineered BAR Domain Proteins. ACS synthetic biology Jones, T. n., Liu, A. n., Cui, B. n. 2020

    Abstract

    Nanoscale membrane curvature is now understood to play an active role in essential cellular processes such as endocytosis, exocytosis, and actin dynamics. Previous studies have shown that membrane curvature can directly affect protein function and intracellular signaling. However, few methods are able to precisely manipulate membrane curvature in live cells. Here, we report the development of a new method of generating nanoscale membrane curvature in live cells that is controllable, reversible, and capable of precise spatial and temporal manipulation. For this purpose, we make use of Bin/Amphiphysin/Rvs (BAR) domain proteins, a family of well-studied membrane-remodeling and membrane-sculpting proteins. Specifically, we engineered two optogenetic systems, opto-FBAR and opto-IBAR, that allow light-inducible formation of positive and negative membrane curvature, respectively. Using opto-FBAR, blue light activation results in the formation of tubular membrane invaginations (positive curvature), controllable down to the subcellular level. Using opto-IBAR, blue light illumination results in the formation of membrane protrusions or filopodia (negative curvature). These systems present a novel approach for light-inducible manipulation of nanoscale membrane curvature in live cells.

    View details for DOI 10.1021/acssynbio.9b00516

    View details for PubMedID 32212723

  • F-actin homeostasis through transcriptional regulation and proteasome-mediated proteolysis PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Onishi, M., Pecani, K., Jones, T., Pringle, J. R., Cross, F. R. 2018; 115 (28): E6487–E6496