All Publications


  • Mechanism of the cadherin-catenin F-actin catch bond interaction. eLife Wang, A., Dunn, A. R., Weis, W. I. 2022; 11

    Abstract

    Mechanotransduction at cell-cell adhesions is crucial for the structural integrity, organization, and morphogenesis of epithelia. At cell-cell junctions, ternary E-cadherin/beta-catenin/alphaE-catenin complexes sense and transmit mechanical load by binding to F-actin. The interaction with F-actin, described as a two-state catch bond, is weak in solution but is strengthened by applied force due to force-dependent transitions between weak and strong actin-binding states. Here, we provide direct evidence from optical trapping experiments that the catch bond property principally resides in the alphaE-catenin actin-binding domain (ABD). Consistent with our previously proposed model, deletion of the first helix of the five-helix ABD bundle enables stable interactions with F-actin under minimal load that are well-described by a single-state slip bond, even when alphaE-catenin is complexed with beta-catenin and E-cadherin. Our data argue for a conserved catch bond mechanism for adhesion proteins with structurally similar ABDs. We also demonstrate that a stably bound ABD strengthens load-dependent binding interactions between a neighboring complex and F-actin, but the presence of the other alphaE-catenin domains weakens this effect. These results provide mechanistic insight to the cooperative binding of the cadherin-catenin complex to F-actin, which regulate dynamic cytoskeletal linkages in epithelial tissues.

    View details for DOI 10.7554/eLife.80130

    View details for PubMedID 35913118

  • Structure and mechanism of the cation-chloride cotransporter NKCC1. Nature Chew, T. A., Orlando, B. J., Zhang, J., Latorraca, N. R., Wang, A., Hollingsworth, S. A., Chen, D., Dror, R. O., Liao, M., Feng, L. 2019

    Abstract

    Cation-chloride cotransporters (CCCs) mediate the electroneutral transport of chloride, potassium and/or sodium across the membrane. They have critical roles in regulating cell volume, controlling ion absorption and secretion across epithelia, and maintaining intracellular chloride homeostasis. These transporters are primary targets for some of the most commonly prescribed drugs. Here we determined the cryo-electron microscopy structure of the Na-K-Cl cotransporter NKCC1, an extensively studied member of the CCC family,from Danio rerio. The structure defines the architecture of this protein family and reveals how cytosolic and transmembrane domains are strategically positioned for communication. Structural analyses, functional characterizations and computational studies reveal the ion-translocation pathway, ion-binding sites and key residues for transport activity. These results provide insights into ion selectivity, coupling and translocation, and establish a framework for understanding the physiological functions of CCCs and interpreting disease-related mutations.

    View details for DOI 10.1038/s41586-019-1438-2

    View details for PubMedID 31367042