Education & Certifications

  • MS, Stanford University, Electrical Engineering (2021)
  • BS, Beijing Normal University, Physics (2019)

Work Experience

  • Optical Engineering Intern, Lumentum (5/2021 - 9/2021)


    San Jose

All Publications

  • Topological visualization of the plasmonic resonance of a nano C-aperture. Applied physics letters Zaman, M. A., Ren, W., Wu, M., Padhy, P., Hesselink, L. 2023; 122 (8): 081107


    The plasmonic response of a nano C-aperture is analyzed using the Vector Field Topology (VFT) visualization technique. The electrical currents that are induced on the metal surfaces when the C-aperture is excited by light is calculated for various wavelengths. The topology of this two-dimensional current density vector is analyzed using VFT. The plasmonic resonance condition is found to coincide with a distinct shift in the topology which leads to increased current circulation. A physical explanation of the phenomenon is discussed. Numerical results are presented to justify the claims. The analyses suggest that VFT can be a powerful tool for studying the physical mechanics of nano-photonic structures.

    View details for DOI 10.1063/5.0143309

    View details for PubMedID 36846092

  • Controlled Transport of Individual Microparticles Using Dielectrophoresis. Langmuir : the ACS journal of surfaces and colloids Zaman, M. A., Padhy, P., Wu, M., Ren, W., Jensen, M. A., Davis, R. W., Hesselink, L. 2022


    A dielectrophoretic device employing a planar array of microelectrodes is designed for controlled transport of individual microparticles. By exciting the electrodes in sequence, a moving dielectrophoretic force is created that can drag a particle across the electrodes in a straight line. The electrode shapes are designed to counter any lateral drift of the trapped particle during transport. This facilitates single particle transport by creating a narrow two-dimensional corridor for the moving dielectrophoretic force to operate on. The design and analysis processes are discussed in detail. Numerical simulations are performed to calculate the electromagnetic field distribution and the generated dielectrophoretic force near the electrodes. The Langevin equation is used for analyzing the trajectory of a microparticle under the influence of the external forces. The simulations show how the designed electrode geometry produces the necessary lateral confinement required for successful particle transport. Finally, experimental results are presented showing controlled bidirectional linear transport of single polystyrene beads of radius 10 and 5 μm for a distances 840 and 1100 μm, respectively. The capabilities of the proposed platform make it suitable for micro total analysis systems (μTAS) and lab-on-a-chip (LOC) applications.

    View details for DOI 10.1021/acs.langmuir.2c02235

    View details for PubMedID 36541659

  • Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nature biomedical engineering Wu, X., Jiang, Y., Rommelfanger, N. J., Yang, F., Zhou, Q., Yin, R., Liu, J., Cai, S., Ren, W., Shin, A., Ong, K. S., Pu, K., Hong, G. 2022


    Neural circuitry is typically modulated via invasive brain implants and tethered optical fibres in restrained animals. Here we show that wide-field illumination in the second near-infrared spectral window (NIR-II) enables implant-and-tether-free deep-brain stimulation in freely behaving mice with stereotactically injected macromolecular photothermal transducers activating neurons ectopically expressing the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1). The macromolecular transducers, ~40 nm in size and consisting of a semiconducting polymer core and an amphiphilic polymer shell, have a photothermal conversion efficiency of 71% at 1,064 nm, the wavelength at which light attenuation by brain tissue is minimized (within the 400-1,800 nm spectral window). TRPV1-expressing neurons in the hippocampus, motor cortex and ventral tegmental area of mice can be activated with minimal thermal damage on wide-field NIR-II illumination from a light source placed at distances higher than 50 cm above the animal's head and at an incident power density of 10 mW mm-2. Deep-brain stimulation via wide-field NIR-II illumination may open up opportunities for social behavioural studies in small animals.

    View details for DOI 10.1038/s41551-022-00862-w

    View details for PubMedID 35314800

  • Microparticle transport along a planar electrode array using moving dielectrophoresis. Journal of applied physics Zaman, M. A., Padhy, P., Ren, W., Wu, M., Hesselink, L. 2021; 130 (3): 034902


    We present a device that can achieve controlled transport of colloidal microparticles using an array of micro-electrodes. By exciting the micro-electrodes in regular sequence with an AC voltage, a time-varying moving dielectrophoretic force-field is created. This force propels colloidal microparticles along the electrode array. Using this method, we demonstrate bidirectional transport of polystyrene micro-spheres. Electromagnetic simulation of the device is performed, and the dielectrophoretic force profile around the electrode array is mapped. We develop a Brownian dynamics model of the trajectory of a particle under the influence of the time-varying force-field. Numerical and experimental results showing controlled particle transport are presented. The numerical model is found to be in good agreement with experimental data. The developed numerical framework can be useful in designing and modeling lab-on-a-chip devices that employ external non-contact forces for micro-/nanoparticle manipulation.

    View details for DOI 10.1063/5.0049126

    View details for PubMedID 34334807