Bio
Fang Liu is an assistant professor of chemistry at Stanford University. Her reserach is focused on the light induced dynamics of solid low dimensional materials and construction of low dimensional artificial structures. Prior to her current position, she was a DOE Office of Energy Efficiency and Renewable Energy (EERE) postdoctoral fellow in the group of Prof. Xiaoyang Zhu at Columbia University. Her postdoctoral research focused on using femtosecond extreme UV in probing time and angle resolved photoemission spectroscopy of 2D materials. Prior to working in Columbia, she worked under the direction of Prof. Marsha I Lester at University of Pennsylvania. She received her Ph.D. in 2015 and worked as a postdoc in the same group in 2016. At UPenn, she used time resolved spectroscopic techniques to study spectroscopy and photochemistry of Criegee intermediates. She received her B.S. in chemistry at Peking University in 2010.
Academic Appointments
-
Assistant Professor, Chemistry
-
Principal Investigator, Stanford PULSE Institute
Honors & Awards
-
Office of Energy Efficiency & Renewable Energy (EERE) Postdoctoral Research Award, Solar Energy Technologies Office of the Department of Energy (2018-2020)
-
Miller Prize, International Symposium on Molecular Spectroscopy (2019)
Professional Education
-
B.S. in chemistry, Peking University (2010)
-
Ph.D. in chemistry, University of Pennsylvania (2015)
Current Research and Scholarly Interests
The group will develop scalable and controllable processes to produce low dimensional materials and their artificial structures, and unravel their novel static and dynamical properties of broad interest to future photonic, electronic and energy technologies. The topics will include: a) Unraveling time-resolved dynamics in light-induced electronic response of two dimensional (2D) materials artificial structures. b) Fabrication of 1D atomically thin nanoribbon arrays and characterization of the electronic and magnetic properties for the prominent edge states. c) Lightwave manipulation with 2D superlattices. These research projects will provide participating students with broad interdisciplinary training across physics, chemistry, and materials science.
2024-25 Courses
- Advanced Physical Chemistry
CHEM 271 (Aut) - Instrumental Analysis Principles and Practice
CHEM 131 (Spr) - Physical Chemistry II
CHEM 173 (Aut) -
Independent Studies (5)
- Advanced Undergraduate Research
CHEM 190 (Aut, Win, Spr, Sum) - Directed Instruction/Reading
CHEM 90 (Aut, Win, Spr, Sum) - Ph.D. Research
MATSCI 300 (Aut, Win, Spr, Sum) - Research and Special Advanced Work
CHEM 200 (Aut, Win, Spr, Sum) - Research in Chemistry
CHEM 301 (Aut, Win, Spr, Sum)
- Advanced Undergraduate Research
-
Prior Year Courses
2023-24 Courses
- Advanced Physical Chemistry
CHEM 271 (Aut) - Instrumental Analysis Principles and Practice
CHEM 131 (Spr) - Physical Chemistry II
CHEM 173 (Aut)
2022-23 Courses
- Instrumental Analysis Principles and Practice
CHEM 131 (Spr)
2021-22 Courses
- Exploring Chemical Research at Stanford
CHEM 91 (Win) - Instrumental Analysis Principles and Practice
CHEM 131 (Spr) - Physical Chemistry II
CHEM 173 (Aut)
- Advanced Physical Chemistry
Stanford Advisees
-
Doctoral Dissertation Reader (AC)
Jenny Hu, Joseph Kelly, Joseph Lucero, Amy McKeown-Green, Pournima Narayanan, Junkun Pan, Chenyi Xia, Xiangyu Xing, Fenghao Xu -
Postdoctoral Faculty Sponsor
Qile Li -
Doctoral Dissertation Advisor (AC)
Amalya Johnson, Samuel Lai, Ashley Saunders, Gregory Zaborski
All Publications
-
Direct Exfoliation of Nanoribbons from Bulk van der Waals Crystals.
Small (Weinheim an der Bergstrasse, Germany)
2024: e2403504
Abstract
Confinement of monolayers into quasi-1D atomically thin nanoribbons could lead to novel quantum phenomena beyond those achieved in their bulk and monolayer counterparts. However, current experimental availability of nanoribbon species beyond graphene is limited to bottom-up synthesis or lithographic patterning. In this study, a versatile and direct approach is introduced to exfoliate bulk van der Waals crystals as nanoribbons. Akin to the Scotch tape exfoliation method for producing monolayers, this technique provides convenient access to a wide range of nanoribbons derived from their corresponding bulk crystals, including MoS2, WS2, MoSe2, WSe2, MoTe2, WTe2, ReS2, and hBN. The nanoribbons are predominantly monolayer, single-crystalline, parallel-aligned, flat, andexhibit high aspect ratios. The role of confinement, strain, and edge configuration of these nanoribbons is observed in their electrical, magnetic, and optical properties. This versatile exfoliation technique provides a universal route for producing a variety of nanoribbon materials and supports the study of their fundamental properties and potential applications.
View details for DOI 10.1002/smll.202403504
View details for PubMedID 39140377
-
Solution-phase sample-averaged single-particle spectroscopy of quantum emitters with femtosecond resolution.
Nature materials
2024
Abstract
The development of many quantum optical technologies depends on the availability of single quantum emitters with near-perfect coherence. Systematic improvement is limited by a lack of understanding of the microscopic energy flow at the single-emitter level and ultrafast timescales. Here we utilize a combination of fluorescence correlation spectroscopy and ultrafast spectroscopy to capture the sample-averaged dynamics of defects with single-particle sensitivity. We employ this approach to study heterogeneous emitters in two-dimensional hexagonal boron nitride. From milliseconds to nanoseconds, the translational, shelving, rotational and antibunching features are disentangled in time, which quantifies the normalized two-photon emission quantum yield. Leveraging the femtosecond resolution of this technique, we visualize electron-phonon coupling and discover the acceleration of polaronic formation on multi-electron excitation. Corroborated with theory, this translates to the photon fidelity characterization of cascaded emission efficiency and decoherence time. Our work provides a framework for ultrafast spectroscopy in heterogeneous emitters, opening new avenues of extreme-scale characterization for quantum applications.
View details for DOI 10.1038/s41563-024-01855-7
View details for PubMedID 38589542
View details for PubMedCentralID 5615041
-
Temperature-Dependent Excitonic Light Manipulation with Atomically Thin Optical Elements.
Nano letters
2024
Abstract
Monolayer 2D semiconductors, such as WS2, exhibit uniquely strong light-matter interactions due to exciton resonances that enable atomically thin optical elements. Similar to geometry-dependent plasmon and Mie resonances, these intrinsic material resonances offer coherent and tunable light scattering. Thus far, the impact of the excitons' temporal dynamics on the performance of such excitonic metasurfaces remains unexplored. Here, we show how the excitonic decay rates dictate the focusing efficiency of an atomically thin lens carved directly out of exfoliated monolayer WS2. By isolating the coherent exciton radiation from the incoherent background in the focus of the lens, we obtain a direct measure of the role of exciton radiation in wavefront shaping. Furthermore, we investigate the influence of exciton-phonon scattering by characterizing the focusing efficiency as a function of temperature, demonstrating an increased optical efficiency at cryogenic temperatures. Our results provide valuable insights into the role of excitonic light scattering in 2D nanophotonic devices.
View details for DOI 10.1021/acs.nanolett.4c00694
View details for PubMedID 38578061
-
Millimeter-Scale Exfoliation of hBN with Tunable Flake Thickness for Scalable Encapsulation
ACS APPLIED NANO MATERIALS
2024
View details for DOI 10.1021/acsanm.4c00412
View details for Web of Science ID 001184723800001
-
Hidden phonon highways promote photoinduced interlayer energy transfer in twisted transition metal dichalcogenide heterostructures.
Science advances
2024; 10 (4): eadj8819
Abstract
Vertically stacked van der Waals (vdW) heterostructures exhibit unique electronic, optical, and thermal properties that can be manipulated by twist-angle engineering. However, the weak phononic coupling at a bilayer interface imposes a fundamental thermal bottleneck for future two-dimensional devices. Using ultrafast electron diffraction, we directly investigated photoinduced nonequilibrium phonon dynamics in MoS2/WS2 at 4° twist angle and WSe2/MoSe2 heterobilayers with twist angles of 7°, 16°, and 25°. We identified an interlayer heat transfer channel with a characteristic timescale of ~20 picoseconds, about one order of magnitude faster than molecular dynamics simulations assuming initial intralayer thermalization. Atomistic calculations involving phonon-phonon scattering suggest that this process originates from the nonthermal phonon population following the initial interlayer charge transfer and scattering. Our findings present an avenue for thermal management in vdW heterostructures by tailoring nonequilibrium phonon populations.
View details for DOI 10.1126/sciadv.adj8819
View details for PubMedID 38266081
-
Photoluminescence upconversion in monolayer WSe2 activated by plasmonic cavities through resonant excitation of dark excitons.
Nature communications
2023; 14 (1): 5726
Abstract
Anti-Stokes photoluminescence (PL) is light emission at a higher photon energy than the excitation, with applications in optical cooling, bioimaging, lasing, and quantum optics. Here, we show how plasmonic nano-cavities activate anti-Stokes PL in WSe2 monolayers through resonant excitation of a dark exciton at room temperature. The optical near-fields of the plasmonic cavities excite the out-of-plane transition dipole of the dark exciton, leading to light emission from the bright exciton at higher energy. Through statistical measurements on hundreds of plasmonic cavities, we show that coupling to the dark exciton leads to a near hundred-fold enhancement of the upconverted PL intensity. This is further corroborated by experiments in which the laser excitation wavelength is tuned across the dark exciton. We show that a precise nanoparticle geometry is key for a consistent enhancement, with decahedral nanoparticle shapes providing an efficient PL upconversion. Finally, we demonstrate a selective and reversible switching of the upconverted PL via electrochemical gating. Our work introduces the dark exciton as an excitation channel for anti-Stokes PL in WSe2 and paves the way for large-area substrates providing nanoscale optical cooling, anti-Stokes lasing, and radiative engineering of excitons.
View details for DOI 10.1038/s41467-023-41401-8
View details for PubMedID 37714855
View details for PubMedCentralID PMC10504321
-
Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor.
Nature communications
2023; 14 (1): 4953
Abstract
Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials-the Janus transition metal dichalcogenides in the 1 T' phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1 T' MoSSe (e.g., > 50 times higher than 2H MoS2 for 18th order harmonic generation; > 20 times higher than 2H MoS2 for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit.
View details for DOI 10.1038/s41467-023-40373-z
View details for PubMedID 37587120
View details for PubMedCentralID 8282873
-
A Purcell-enabled monolayer semiconductor free-space optical modulator
NATURE PHOTONICS
2023
View details for DOI 10.1038/s41566-023-01250-9
View details for Web of Science ID 001031418200001
-
Controlling Valley-Specific Light Emission from Monolayer MoS2 with Achiral Dielectric Metasurfaces.
Nano letters
2023
Abstract
Excitons in two-dimensional transition metal dichalcogenides have a valley degree of freedom that can be optically manipulated for quantum information processing. Here, we integrate MoS2 monolayers with achiral silicon disk array metasurfaces to enhance and control valley-specific absorption and emission. Through the coupling to the metasurface electric and magnetic Mie modes, the intensity and lifetime of the emission of neutral excitons, trions, and defect bound excitons can be enhanced and shortened, respectively, while the spectral shape can be modified. Additionally, the degree of polarization (DOP) of exciton and trion emission from the valley can be symmetrically enhanced at 100 K. The DOP increase is attributed to both the metasurface-enhanced chiral absorption of light and the metasurface-enhanced exciton emission from the Purcell effect. Combining Si-compatible photonic design with large-scale 2D materials integration, our work makes an important step toward on-chip valleytronic applications approaching room-temperature operation.
View details for DOI 10.1021/acs.nanolett.3c01630
View details for PubMedID 37347949
-
Time- and angle-resolved photoemission spectroscopy (TR-ARPES) of TMDC monolayers and bilayers.
Chemical science
2023; 14 (4): 736-750
Abstract
Many unique properties in two-dimensional (2D) materials and their heterostructures rely on charge excitation, scattering, transfer, and relaxation dynamics across different points in the momentum space. Understanding these dynamics is crucial in both the fundamental study of 2D physics and their incorporation in optoelectronic and quantum devices. A direct method to probe charge carrier dynamics with momentum resolution is time- and angle-resolved photoemission spectroscopy (TR-ARPES). Such measurements have been challenging, since photoexcited carriers in many 2D monolayers reside at high crystal momenta, requiring probe photon energies in the extreme UV (EUV) regime. These challenges have been recently addressed by development of table-top pulsed EUV sources based on high harmonic generation, and the successful integration into a TR-ARPES and/or time-resolved momentum microscope. Such experiments will allow direct imaging of photoelectrons with superior time, energy, and crystal momentum resolution, with unique advantage over traditional optical measurements. Recently, TR-ARPES experiments of 2D transition metal dichalcogenide (TMDC) monolayers and bilayers have created unprecedented opportunities to reveal many intrinsic dynamics of 2D materials, such as bandgap renormalization, charge carrier scattering, relaxation, and wavefunction localization in moiré patterns. This perspective aims to give a short review of recent discoveries and discuss the challenges and opportunities of such techniques in the future.
View details for DOI 10.1039/d2sc04124c
View details for PubMedID 36755720
View details for PubMedCentralID PMC9890651
-
High-harmonic generation from artificially stacked 2D crystals
NANOPHOTONICS
2023
View details for DOI 10.1515/nanoph-2022-0595
View details for Web of Science ID 000909764500001
-
Floquet engineering of strongly driven excitons in monolayer tungsten disulfide
NATURE PHYSICS
2023
View details for DOI 10.1038/s41567-022-01849-9
View details for Web of Science ID 000910858200004
-
Time- and angle-resolved photoemission spectroscopy (TR-ARPES) of TMDC monolayers and bilayers
CHEMICAL SCIENCE
2022
View details for DOI 10.1039/d2sc04124c
View details for Web of Science ID 000897884800001
-
The Reststrahlen Effect in the Optically Thin Limit: A Framework for Resonant Response in Thin Media.
Nano letters
2022
Abstract
Sharp resonances can strongly modify the electromagnetic response of matter. A classic example is the Reststrahlen effect - high reflectivity in the mid-infrared in many polar crystals near their optical phonon resonances. Although this effect in bulk materials has been studied extensively, a systematic treatment for finite thickness remains challenging. Here we describe, experimentally and theoretically, the Reststrahlen response in hexagonal boron nitride across more than 5 orders of magnitude in thickness, down to a monolayer. We find that the high reflectivity plateau of the Reststrahlen band evolves into a single peak as the material enters the optically thin limit, within which two distinct regimes emerge: a strong-response regime dominated by coherent radiative decay and a weak-response regime dominated by damping. We show that this evolution can be explained by a simple two-dimensional sheet model that can be applied to a wide range of thin media.
View details for DOI 10.1021/acs.nanolett.2c02819
View details for PubMedID 36112673
-
Probing electron-hole coherence in strongly driven 2D materials using high-harmonic generation
OPTICA
2022; 9 (5): 512-516
View details for DOI 10.1364/OPTICA.444105
View details for Web of Science ID 000799613700010
-
Bright and Dark Exciton Coherent Coupling and Hybridization Enabled by External Magnetic Fields.
Nano letters
2022
Abstract
Magnetic field- and polarization-dependent measurements on bright and dark excitons in monolayer WSe2 combined with time-dependent density functional theory calculations reveal intriguing phenomena. Magnetic fields up to 25 T parallel to the WSe2 plane lead to a partial brightening of the energetically lower lying exciton, leading to an increase of the dephasing time. Using a broadband femtosecond pulse excitation, the bright and partially allowed excitonic state can be excited simultaneously, resulting in coherent quantum beating between these states. The magnetic fields perpendicular to the WSe2 plane energetically shift the bright and dark excitons relative to each other, resulting in the hybridization of the states at the K and K' valleys. Our experimental results are well captured by time-dependent density functional theory calculations. These observations show that magnetic fields can be used to control the coherent dephasing and coupling of the optical excitations in atomically thin semiconductors.
View details for DOI 10.1021/acs.nanolett.1c04667
View details for PubMedID 35129357
-
Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures via Two-Dimensional Electronic Spectroscopy.
Nano letters
2021
Abstract
Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS2/MoS2 have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy. Here, we perform two-dimensional electronic spectroscopy (2DES), a method with both high frequency and temporal resolution, on a large-area WS2/MoS2 HS where we unambiguously time resolve both interlayer hole and electron transfer with 34 ± 14 and 69 ± 9 fs time constants, respectively. We simultaneously resolve additional optoelectronic processes including band gap renormalization and intralayer exciton coupling. This study demonstrates the advantages of 2DES in comprehensively resolving ultrafast processes in TMD-HS, including ICT.
View details for DOI 10.1021/acs.nanolett.1c01098
View details for PubMedID 34037406
-
Mechanical exfoliation of large area 2D materials from vdW crystals
PROGRESS IN SURFACE SCIENCE
2021; 96 (2)
View details for DOI 10.1016/j.progsurf.2021.100626
View details for Web of Science ID 000657621200005
-
The effect of photo-carrier doping on the generation of high harmonics from MoS2
IEEE. 2021
View details for Web of Science ID 000831479801311
-
Excitons in strain-induced one-dimensional moire potentials at transition metal dichalcogenide heterojunctions
NATURE MATERIALS
2020
Abstract
The possibility of confining interlayer excitons in interfacial moiré patterns has recently gained attention as a strategy to form ordered arrays of zero-dimensional quantum emitters and topological superlattices in transition metal dichalcogenide heterostructures. Strain is expected to play an important role in the modulation of the moiré potential landscape, tuning the array of quantum dot-like zero-dimensional traps into parallel stripes of one-dimensional quantum wires. Here, we present real-space imaging of unstrained zero-dimensional and strain-induced one-dimensional moiré patterns along with photoluminescence measurements of the corresponding excitonic emission from WSe2/MoSe2 heterobilayers. Whereas excitons in zero-dimensional moiré traps display quantum emitter-like sharp photoluminescence peaks with circular polarization, the photoluminescence emission from excitons in one-dimensional moiré potentials shows linear polarization and two orders of magnitude higher intensity. These results establish strain engineering as an effective method to tailor moiré potentials and their optoelectronic response on demand.
View details for DOI 10.1038/s41563-020-0730-8
View details for Web of Science ID 000548166000009
View details for PubMedID 32661380
-
Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2
PHYSICAL REVIEW B
2020; 101 (20)
View details for DOI 10.1103/PhysRevB.101.201405
View details for Web of Science ID 000533497100001
-
Strong polaronic effect in a superatomic two-dimensional semiconductor
JOURNAL OF CHEMICAL PHYSICS
2020; 152 (17): 171101
Abstract
Crystalline solids assembled from superatomic building blocks are attractive functional materials due to their hierarchical structure, multifunctionality, and tunability. An interesting example is Re6Se8Cl2, in which the Re6Se8 building blocks are covalently linked into two-dimensional (2D) sheets that are stacked into a layered van der Waals solid. It is an indirect gap semiconductor that, when heavily doped, becomes a superconductor at low temperatures. Given the finite electronic bandwidths (300-400 meV), carrier properties in this material are expected to be strongly influenced by coupling to phonons. Here, we apply angle-resolved photoemission spectroscopy to probe the valence band edge (VBE) of Re6Se8Cl2. We find that dispersion of the VBE is a strong function of temperature. The bandwidth is W = 120 ± 30 meV at 70 K and decreases by one order of magnitude to W ∼ 10 ± 20 meV as temperature is increased to 300 K. This observation reveals the dominant polaronic effects in Re6Se8Cl2, consistent with the Holstein polaron model commonly used to describe molecular solids.
View details for DOI 10.1063/5.0006455
View details for Web of Science ID 000532295500001
View details for PubMedID 32384833
-
Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices
SCIENCE
2020; 367 (6480): 903-+
Abstract
Two-dimensional materials from layered van der Waals (vdW) crystals hold great promise for electronic, optoelectronic, and quantum devices, but technological implementation will be hampered by the lack of high-throughput techniques for exfoliating single-crystal monolayers with sufficient size and high quality. Here, we report a facile method to disassemble vdW single crystals layer by layer into monolayers with near-unity yield and with dimensions limited only by bulk crystal sizes. The macroscopic monolayers are comparable in quality to microscopic monolayers from conventional Scotch tape exfoliation. The monolayers can be assembled into macroscopic artificial structures, including transition metal dichalcogenide multilayers with broken inversion symmetry and substantially enhanced nonlinear optical response. This approach takes us one step closer to mass production of macroscopic monolayers and bulk-like artificial materials with controllable properties.
View details for DOI 10.1126/science.aba1416
View details for Web of Science ID 000515235800042
View details for PubMedID 32079769
-
Broad-Band Near-Infrared Doublet Emission in a Tetrathiafulvalene-Based Metal-Organic Framework
JOURNAL OF PHYSICAL CHEMISTRY LETTERS
2020; 11 (3): 762–66
Abstract
The upper limit in LED quantum efficiency from conventional closed-shell molecules is 25% as dictated by singlet and triplet spin statistics. Spin-doublet organic molecules are attractive candidates to exceed this limit, thanks to their 100% theoretical quantum efficiency in radiative recombination. However, examples of stable spin-doublet molecules in the solid state are rare. Here we show broad-band near-infrared emission in the columnar π-π stacked tetrathiafulvalene (TTF) in a metal organic framework (MOF) single crystal. The broad emission is similar to known TTF+• doublet emission and is stabilized in the MOF crystal. This interpretation is supported by the observation of enhanced PL emission following UV oxidation of the MOF crystal to increase the doublet concentration. The findings suggest tetrathiafulvalene-based MOFs as promising materials for near-IR light emission and the MOF structure may be a general strategy to stabilize radical cation species in the solid state.
View details for DOI 10.1021/acs.jpclett.9b03383
View details for Web of Science ID 000512223400026
View details for PubMedID 31935326
-
Variation of Interfacial Interactions in PC61BM-like Electron-Transporting Compounds for Perovskite Solar Cells
ACS APPLIED MATERIALS & INTERFACES
2019; 11 (37): 34408–15
Abstract
The synthesis, characterization, and incorporation of phenyl-C61-butyric acid methyl ester (PC61BM)-like derivatives as electron transporting materials (ETMs) in inverted perovskite solar cells (PSCs) are reported. These compounds have the same structure except for the ester substituent, which was varied from methyl to phenyl to thienyl and to pyridyl. The three latter derivatives performed better than PC61BM in PSCs, mainly attributed to the specific interactions of the fullerenes with the perovskite layer, as evidenced by X-ray photoelectron spectroscopy (XPS) and steady-state and time-resolved photoluminescence (SS- and TRPL) measurements. The experimental results were fully supported by density functional theory (DFT) calculations, which showed that the strongest interactions were exhibited by the compound possessing the pyridyl substituent.
View details for DOI 10.1021/acsami.9b09018
View details for Web of Science ID 000487179900095
View details for PubMedID 31318519
-
Direct Determination of Band-Gap Renormalization in the Photoexcited Monolayer MoS2
PHYSICAL REVIEW LETTERS
2019; 122 (24): 246803
Abstract
A key feature of monolayer semiconductors, such as transition-metal dichalcogenides, is the poorly screened Coulomb potential, which leads to a large exciton binding energy (E_{b}) and strong renormalization of the quasiparticle band gap (E_{g}) by carriers. The latter has been difficult to determine due to a cancellation in changes of E_{b} and E_{g}, resulting in little change in optical transition energy at different carrier densities. Here, we quantify band-gap renormalization in macroscopic single crystal MoS_{2} monolayers on SiO_{2} using time and angle-resolved photoemission spectroscopy. At an excitation density above the Mott threshold, E_{g} decreases by as much as 360 meV. We compare the carrier density-dependent E_{g} with previous theoretical calculations and show the necessity of knowing both doping and excitation densities in quantifying the band gap.
View details for DOI 10.1103/PhysRevLett.122.246803
View details for Web of Science ID 000473034200015
View details for PubMedID 31322407
-
Bimodal Bandgaps in Mixed Cesium Methylammonium Lead Bromide Perovskite Single Crystals
JOURNAL OF PHYSICAL CHEMISTRY C
2019; 123 (23): 14865–70
View details for DOI 10.1021/acs.jpcc.9b03536
View details for Web of Science ID 000471834000086
-
Enhanced Open-Circuit Voltage in Perovskite Solar Cells with Open-Cage [60]Fullerene Derivatives as Electron-Transporting Materials
MATERIALS
2019; 12 (8)
Abstract
The synthesis, characterization, and incorporation of open-cage [60]fullerene derivatives as electron-transporting materials (ETMs) in perovskite solar cells (PSCs) with an inverted planar (p-i-n) structure is reported. Following optical and electrochemical characterization of the open-cage fullerenes 2a-c, p-i-n PSCs with a indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/perovskite/fullerene/Ag structure were prepared. The devices obtained from 2a-b exhibit competitive power conversion efficiencies (PCEs) and improved open-circuit voltage (Voc) values (>1.0 V) in comparison to a reference cell based on phenyl-C61-butyric-acid methyl-ester (PC61BM). These results are rationalized in terms of a) the higher passivation ability of the open-cage fullerenes with respect to the other fullerenes, and b) a good overlap between the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) levels of 2a-b and the conduction band of the perovskite.
View details for DOI 10.3390/ma12081314
View details for Web of Science ID 000467767400120
View details for PubMedID 31018500
-
How lasing happens in CsPbBr3 perovskite nanowires
NATURE COMMUNICATIONS
2019; 10: 265
Abstract
Lead halide perovskites are emerging as an excellent material platform for optoelectronic processes. There have been extensive discussions on lasing, polariton formation, and nonlinear processes in this material system, but the underlying mechanism remains unknown. Here we probe lasing from CsPbBr3 perovskite nanowires with picosecond (ps) time resolution and show that lasing originates from stimulated emission of an electron-hole plasma. We observe an anomalous blue-shifting of the lasing gain profile with time up to 25 ps, and assign this as a signature for lasing involving plasmon emission. The time domain view provides an ultra-sensitive probe of many-body physics which was obscured in previous time-integrated measurements of lasing from lead halide perovskite nanowires.
View details for DOI 10.1038/s41467-018-07972-7
View details for Web of Science ID 000455762900009
View details for PubMedID 30651537
View details for PubMedCentralID PMC6335413
-
Three-Dimensional Graphene Nanostructures
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
2018; 140 (30): 9341–45
Abstract
This Communication details the implementation of a new concept for the design of high-performance optoelectronic materials: three-dimensional (3D) graphene nanostructures. This general strategy is showcased through the synthesis of a three-bladed propeller nanostructure resulting from the coupling and fusion of a central triptycene hub and helical graphene nanoribbons. Importantly, these 3D graphene nanostructures show remarkable new properties that are distinct from the substituent parts. For example, the larger nanostructures show an enhancement in absorption and decreased contact resistance in optoelectronic devices. To show these enhanced properties in a device setting, the nanostructures were utilized as the electron-extracting layers in perovskite solar cells. The largest of these nanostructures achieved a PCE of 18.0%, which is one of the highest values reported for non-fullerene electron-extracting layers.
View details for DOI 10.1021/jacs.8b04119
View details for Web of Science ID 000440877000004
View details for PubMedID 29799738
-
Competition Between Hot-Electron Cooling and Large Polaron Screening in CsPbBr3 Perovskite Single Crystals
JOURNAL OF PHYSICAL CHEMISTRY C
2018; 122 (25): 13724–30
View details for DOI 10.1021/acs.jpcc.8b00476
View details for Web of Science ID 000437811500057
-
Superatomic Two-Dimensional Semiconductor
NANO LETTERS
2018; 18 (2): 1483–88
Abstract
Structural complexity is of fundamental interest in materials science because it often results in unique physical properties and functions. Founded on this idea, the field of solid state chemistry has a long history and continues to be highly active, with new compounds discovered daily. By contrast, the area of two-dimensional (2D) materials is young, but its expansion, although rapid, is limited by a severe lack of structural diversity and complexity. Here, we report a novel 2D semiconductor with a hierarchical structure composed of covalently linked Re6Se8 clusters. The material, a 2D structural analogue of the Chevrel phase, is prepared via mechanical exfoliation of the van der Waals solid Re6Se8Cl2. Using scanning tunneling spectroscopy, photoluminescence and ultraviolet photoelectron spectroscopy, and first-principles calculations, we determine the electronic bandgap (1.58 eV), optical bandgap (indirect, 1.48 eV), and exciton binding energy (100 meV) of the material. The latter is consistent with the partially 2D nature of the exciton. Re6Se8Cl2 is the first member of a new family of 2D semiconductors whose structure is built from superatomic building blocks instead of simply atoms; such structures will expand the conceptual design space for 2D materials research.
View details for DOI 10.1021/acs.nanolett.7b05278
View details for Web of Science ID 000425559700120
View details for PubMedID 29368934
-
Cove-Edge Nanoribbon Materials for Efficient Inverted Halide Perovskite Solar Cells
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
2017; 56 (46): 14648–52
Abstract
Two cove-edge graphene nanoribbons hPDI2-Pyr-hPDI2 (1) and hPDI3-Pyr-hPDI3 (2) are used as efficient electron-transporting materials (ETMs) in inverted planar perovskite solar cells (PSCs). Devices based on the new graphene nanoribbons exhibit maximum power-conversion efficiencies (PCEs) of 15.6 % and 16.5 % for 1 and 2, respectively, while a maximum PCE of 14.9 % is achieved with devices based on [6,6]-phenyl-C61 -butyric acid methyl ester (PC61 BM). The interfacial effects induced by these new materials are studied using photoluminescence (PL), and we find that 1 and 2 act as efficient electron-extraction materials. Additionally, compared with PC61 BM, these new materials are more hydrophobic and have slightly higher LUMO energy levels, thus providing better device performance and higher device stability.
View details for DOI 10.1002/anie.201706895
View details for Web of Science ID 000414764600056
View details for PubMedID 28950414
-
Hydroxyacetone Production From C-3 Criegee Intermediates
JOURNAL OF PHYSICAL CHEMISTRY A
2017; 121 (1): 16–23
Abstract
Hydroxyacetone (CH3C(O)CH2OH) is observed as a stable end product from reactions of the (CH3)2COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at m/z = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for hydroxyacetone formation, including unimolecular isomerization via hydrogen atom transfer and -OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to hydroxyacetone. The hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis.
View details for DOI 10.1021/acs.jpca.6b07712
View details for Web of Science ID 000392035800003
View details for PubMedID 28001404
-
Deep tunneling in the unimolecular decay of CH3CHOO Criegee intermediates to OH radical products
JOURNAL OF CHEMICAL PHYSICS
2016; 145 (23): 234308
Abstract
Unimolecular decay of Criegee intermediates produced in alkene ozonolysis is known to be a significant source of OH radicals in the troposphere. In this work, unimolecular decay of the methyl-substituted Criegee intermediate, syn-CH3CHOO, to OH products is shown to occur at energies significantly below the transition state barrier for a 1,4 hydrogen transfer that leads to these products [Y. Fang et al., J. Chem. Phys. 144, 061102 (2016)]. The rate of appearance of OH products arising from tunneling through the barrier is obtained through direct time-domain measurements following the vibrational activation of syn-CH3CHOO. IR excitation of syn-CH3CHOO at energies nearly 2000 cm-1 below the barrier is achieved through combination bands involving CH stretch and another lower frequency mode, and the resultant OH products are detected by UV laser-induced fluorescence. The observed syn-CH3CHOO combination bands in the 4100-4350 cm-1 region are identified by comparison with the computed IR absorption spectrum. The experimental decay rates are found to be ca. 106 s-1 in this deep tunneling regime, which is approximately 100-times slower than that in the vicinity of the barrier.The experimental results are consistent with statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of the microcanonical decay rates with tunneling through the barrier, and notable deviations may originate from the sparsity in the density of states for syn-CH3CHOO at lower energies. Thermal unimolecular decay of syn-CH3CHOO is predicted to have significant contribution from microcanonical rates at energies that are much below the barrier.
View details for DOI 10.1063/1.4972015
View details for Web of Science ID 000391688900020
View details for PubMedID 28010089
-
Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products
JOURNAL OF CHEMICAL PHYSICS
2016; 145 (4): 044312
Abstract
The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH3CH2CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice-Ramsperger-Kassel-Marcus calculations of the microcanonical unimolecular decay rate for CH3CH2CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantly to the decay rate. Infrared transitions of CH3CH2CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH3CH2CHOO of ca. 10(7) s(-1), which are slower than those obtained for syn-CH3CHOO or (CH3)2COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH3CH2CHOO under atmospheric conditions, giving a rate of 279 s(-1) at 298 K.
View details for DOI 10.1063/1.4958992
View details for Web of Science ID 000381679800027
View details for PubMedID 27475366
-
UV plus VUV double-resonance studies of autoionizing Rydberg states of the hydroxyl radical
JOURNAL OF CHEMICAL PHYSICS
2016; 144 (18): 184311
Abstract
The hydroxyl radical (OH) is a key oxidant in atmospheric and combustion chemistry. Recently, a sensitive and state-selective ionization method has been developed for detection of the OH radical that utilizes UV excitation on the A(2)Σ(+)-X(2)Π transition followed by fixed 118 nm vacuum ultraviolet (VUV) radiation to access autoionizing Rydberg states [J. M. Beames et al., J. Chem. Phys. 134, 241102 (2011)]. The present study uses tunable VUV radiation generated by four-wave mixing to examine the origin of the enhanced ionization efficiency observed for OH radicals prepared in specific A(2)Σ(+) intermediate levels. The enhancement is shown to arise from resonant excitation to distinct rotational and fine structure levels of two newly identified (2)Π Rydberg states with an A(3)Π cationic core and a 3d electron followed by ionization. Spectroscopic constants are derived and effects due to uncoupling of the Rydberg electron are revealed for the OH (2)Π Rydberg states. The linewidths indicate a Rydberg state lifetime due to autoionization on the order of a picosecond.
View details for DOI 10.1063/1.4948640
View details for Web of Science ID 000377711900025
View details for PubMedID 27179488
-
Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products
JOURNAL OF CHEMICAL PHYSICS
2016; 144 (6): 061102
Abstract
In the atmosphere, a dominant loss process for carbonyl oxide intermediates produced from alkene ozonolysis is also an important source of hydroxyl radicals. The rate of appearance of OH radicals is revealed through direct time-domain measurements following vibrational activation of prototypical methyl-substituted Criegee intermediates under collision-free conditions. Complementary theoretical calculations predict the unimolecular decay rate for the Criegee intermediates in the vicinity of the barrier for 1,4 hydrogen transfer that leads to OH products. Both experiment and theory yield unimolecular decay rates of ca. 10(8) and 10(7) s(-1) for syn-CH3CHOO and (CH3)2COO, respectively, at energies near the barrier. Tunneling through the barrier, computed from high level electronic structure theory and experimentally validated, makes a significant contribution to the decay rate. Extension to thermally averaged unimolecular decay of stabilized Criegee intermediates under atmospheric conditions yields rates that are six orders of magnitude slower than those evaluated directly in the barrier region.
View details for DOI 10.1063/1.4941768
View details for Web of Science ID 000371607800003
View details for PubMedID 26874475
-
Direct observation of vinyl hydroperoxide
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
2015; 17 (32): 20490–94
Abstract
Many alkyl-substituted Criegee intermediates are predicted to undergo an intramolecular 1,4-hydrogen transfer to form isomeric vinyl hydroperoxide species (C[double bond, length as m-dash]COOH moiety), which break apart to release OH and vinoxy radicals. We report direct detection of stabilized vinyl hydroperoxides formed via carboxylic acid-catalyzed tautomerization of Criegee intermediates. A doubly hydrogen-bonded interaction between the Criegee intermediate and carboxylic acid facilitates efficient hydrogen transfer through a double hydrogen shift. Deuteration of formic or acetic acid permits migration of a D atom to yield partially deuterated vinyl hydroperoxides, which are distinguished from the CH3CHOO, (CH3)2COO, and CH3CH2CHOO Criegee intermediates by mass. Using 10.5 eV photoionization, three prototypical vinyl hydroperoxides, CH2[double bond, length as m-dash]CHOOD, CH2[double bond, length as m-dash]C(CH3)OOD, and CH3CH[double bond, length as m-dash]CHOOD, are detected directly. Complementary electronic structure calculations reveal several reaction pathways, including the barrierless acid-catalyzed tautomerization reaction predicted previously and a barrierless addition reaction that yields hydroperoxy alkyl formate.
View details for DOI 10.1039/c5cp02917a
View details for Web of Science ID 000359237800004
View details for PubMedID 26199999
-
Direct production of OH radicals upon CH overtone activation of (CH3)(2)COO Criegee intermediates
JOURNAL OF CHEMICAL PHYSICS
2014; 141 (23): 234312
Abstract
Ozonolysis of alkenes, a principle non-photolytic source of atmospheric OH radicals, proceeds through unimolecular decay of energized carbonyl oxide intermediates, known as Criegee intermediates. In this work, cold dimethyl-substituted Criegee intermediates are vibrationally activated in the CH stretch overtone region to drive the 1,4 hydrogen transfer reaction that leads to OH radical products. IR excitation of (CH3)2COO reveals the vibrational states with sufficient oscillator strength, coupling to the reaction coordinate, and energy to surmount the effective barrier (≤ 16.0 kcal mol(-1)) to reaction. Insight on the dissociation dynamics is gleaned from homogeneous broadening of the spectral features, indicative of rapid intramolecular vibrational energy redistribution and/or reaction, as well as the quantum state distribution of the OH X(2)Π (v = 0) products. The experimental results are compared with complementary electronic structure calculations, which provide the IR absorption spectrum and geometric changes along the intrinsic reaction coordinate. Additional theoretical analysis reveals the vibrational modes and couplings that permit (CH3)2COO to access to the transition state region for reaction. The experimental and theoretical results are compared with an analogous recent study of the IR activation of syn-CH3CHOO and its unimolecular decay to OH products [F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science 345, 1596 (2014)].
View details for DOI 10.1063/1.4903961
View details for Web of Science ID 000346662700029
View details for PubMedID 25527940
-
Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates to OH radical products
SCIENCE
2014; 345 (6204): 1596–98
Abstract
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the troposphere, proceeds through energized Criegee intermediates that undergo unimolecular decay to produce OH radicals. Here, we used infrared (IR) activation of cold CH3CHOO Criegee intermediates to drive hydrogen transfer from the methyl group to the terminal oxygen, followed by dissociation to OH radicals. State-selective excitation of CH3CHOO in the CH stretch overtone region combined with sensitive OH detection revealed the IR spectrum of CH3CHOO, effective barrier height for the critical hydrogen transfer step, and rapid decay dynamics to OH products. Complementary theory provides insights on the IR overtone spectrum, as well as vibrational excitations, structural changes, and energy required to move from the minimum-energy configuration of CH3CHOO to the transition state for the hydrogen transfer reaction.
View details for DOI 10.1126/science.1257158
View details for Web of Science ID 000342164500041
View details for PubMedID 25258077
-
1+1 ' resonant multiphoton ionisation of OH radicals via the A(2)sigma(+) state: insights from direct comparison with A-X laser-induced fluorescence detection
MOLECULAR PHYSICS
2014; 112 (7): 897–903
View details for DOI 10.1080/00268976.2013.822592
View details for Web of Science ID 000333882700003
-
UV Spectroscopic Characterization of Dimethyl- and Ethyl-Substituted Carbonyl Oxides
JOURNAL OF PHYSICAL CHEMISTRY A
2014; 118 (12): 2298–2306
Abstract
Dimethyl- and ethyl-substituted Criegee intermediates, (CH3)2COO and CH3CH2CHOO, are photolytically generated from diiodo precursors, detected by VUV photoionization at 118 nm, and spectroscopically characterized via UV-induced depletion of the m/z = 74 signals under jet-cooled conditions. In each case, UV excitation resonant with the B-X transition results in significant ground-state depletion, reflecting the large absorption cross section and rapid dynamics in the excited B state. The broad UV absorption spectra of both (CH3)2COO and CH3CH2CHOO peak at ~320 nm with absorption cross sections approaching ~4 × 10(-17) cm(2) molec(-1). The UV absorption spectra for (CH3)2COO and CH3CH2CHOO are similar to that reported previously for syn-CH3CHOO, suggesting analogous intramolecular interactions between the α-H and terminal O of the COO groups. Hydroxyl radical products generated concurrently with the Criegee intermediates are detected by 1 + 1' resonance enhanced multiphoton ionization. The OH signals, scaled relative to those for the Criegee intermediates, are compared with prior studies of OH yield from alkene ozonolysis. The stationary points along the reaction coordinates from the alkyl-substituted Criegee intermediates to vinyl hydroperoxides and OH products are also computed to provide insight on the OH yields.
View details for DOI 10.1021/jp412726z
View details for Web of Science ID 000333578100014
View details for PubMedID 24621008
-
UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO
JOURNAL OF CHEMICAL PHYSICS
2013; 138 (24): 244307
Abstract
Ozonolysis of alkenes in the troposphere proceeds through a Criegee intermediate, or carbonyl oxide, which has only recently been detected in the gas phase. The present study focuses on the production of an alkyl-substituted Criegee intermediate, CH3CHOO, in a pulsed supersonic expansion, and then utilizes VUV photoionization at 118 nm and UV-induced depletion of the m∕z = 60 signal to probe the B (1)A(') ← X (1)A(') transition. The UV-induced depletion approaches 100% near the peak of the profile at 320 nm, indicating rapid dynamics in the B state, and corresponds to a peak absorption cross section of ∼5 × 10(-17) cm(2) molecule(-1). The electronic spectrum for CH3CHOO is similar to that reported recently for CH2OO, but shifted 15 nm to shorter wavelength, which will result in a longer tropospheric lifetime for CH3CHOO with respect to solar photolysis. Complementary electronic structure calculations (EOM-CCSD) are carried out for the B and X potentials of these Criegee intermediates along the O-O coordinate. An intramolecular interaction stabilizes the ground state of the syn-conformer of CH3CHOO relative to anti-CH3CHOO, and indicates that the syn-conformer will be the more abundant species in the expansion. The excited B electronic state of syn-CH3CHOO is also predicted to be destabilized relative to that for anti-CH3CHOO and CH2OO, in accord with the shift in the B-X transition observed experimentally. Hydroxyl radicals produced concurrently with the generation of the Criegee intermediates are detected by 1+1(') resonance enhanced multiphoton ionization. The OH yield observed with CH3CHOO is 4-fold larger than that from CH2OO, consistent with prior studies of OH generation from alkene ozonolysis.
View details for DOI 10.1063/1.4810865
View details for Web of Science ID 000321148200025
View details for PubMedID 23822244
-
Ultraviolet Spectrum and Photochemistry of the Simplest Criegee Intermediate CH2OO
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
2012; 134 (49): 20045–48
Abstract
Ozonolysis of alkenes in the troposphere produces Criegee intermediates, which have eluded detection in the gas phase until very recently. This laboratory has synthesized the simplest Criegee intermediate within a quartz capillary tube affixed to a pulsed valve to cool and isolate CH(2)OO in a supersonic expansion. UV excitation resonant with the B (1)A' ← X (1)A' transition depletes the ground-state population of CH(2)OO, which is detected by single-photon ionization at 118 nm. The large UV-induced depletion (approaching 100%) near the peak of the profile at 335 nm is indicative of rapid dissociation, consistent with the repulsive B (1)A' potential along the O-O coordinate computed theoretically. The experimental spectrum is in very good accord with the absorption spectrum calculated using the one-dimensional reflection principle. The B ← X spectrum is combined with the solar actinic flux to estimate an atmospheric lifetime for CH(2)OO at midday on the order of ∼1 s with respect to photodissociation.
View details for DOI 10.1021/ja310603j
View details for Web of Science ID 000312351000024
View details for PubMedID 23206289
-
Communication: A new spectroscopic window on hydroxyl radicals using UV plus VUV resonant ionization
JOURNAL OF CHEMICAL PHYSICS
2011; 134 (24): 241102
Abstract
A 1 + 1' multiphoton ionization (MPI) detection scheme for OH radicals is presented. The spectroscopic approach combines initial excitation on the well-characterized A(2)Σ(+)-X(2)Π band system with vacuum ultraviolet (VUV) ionization via autoionizing Rydberg states that converge on the OH(+) A(3)Π ion state. Jet-cooled MPI spectra on the (1,0) and (2,0) bands show anomalous rotational line intensities, while initial excitation on the (0,0) band does not lead to detectable OH(+) ions. The onset of ionization with the (1,0) band is attributed to an energetic threshold; the combined UV + VUV photon energies are above the first member of the autoionizing (A(3)Π)nd Rydberg series. Comparison of the OH 1 + 1' MPI signal with that from single photon VUV ionization of NO indicates that the cross section for photoionization from OH A(2)Σ(+), v' = 1 is on the order of 10(-17) cm(2).
View details for DOI 10.1063/1.3608061
View details for Web of Science ID 000292331900002
View details for PubMedID 21721604
-
Liquid-phase Fischer-Tropsch synthesis over Fe nanoparticles dispersed in polyethylene glycol (PEG)
GREEN CHEMISTRY
2010; 12 (5): 795–97
View details for DOI 10.1039/b926397g
View details for Web of Science ID 000277563500010