Stanford Advisors


All Publications


  • Development and dissemination of infectious disease dynamic transmission models during the COVID-19 pandemic: what can we learn from other pathogens and how can we move forward? LANCET DIGITAL HEALTH Becker, A. D., Grantz, K. H., Hegde, S. T., Berube, S., Cummings, D. T., Wesolowski, A. 2021; 3 (1): E41–E50
  • Chopping the tail: How preventing superspreading can help to maintain COVID-19 control. Epidemics Kain, M. P., Childs, M. L., Becker, A. D., Mordecai, E. A. 2020; 34: 100430

    Abstract

    Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distribution where few individuals or events are responsible for the majority of transmission can result in explosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or late in epidemics. Anticipating and preventing superspreading events can produce large reductions in overall transmission rates. Here, we present a stochastic compartmental (SEIR) epidemiological model framework for estimating transmission parameters from multiple imperfectly observed data streams, including reported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the impact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct settings-Los Angeles and Santa Clara Counties, California; Seattle (King County), Washington; Atlanta (Dekalb and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. We find that the effective reproduction number (RE) dropped below 1 rapidly in all five locations following social distancing orders in mid-March, 2020, but that gradually increasing mobility starting around mid-April led to an RE once again above 1 in late May (Los Angeles, Miami, and Atlanta) or early June (Santa Clara County and Seattle). However, we find that increased social distancing starting in mid-July in response to epidemic resurgence once again dropped RE below 1 in all locations by August 14. We next used the fitted model to ask: how does truncating the individual-level transmission rate distribution (which removes periods of time with especially high individual transmission rates and thus models superspreading events) affect epidemic dynamics and control? We find that interventions that truncate the transmission rate distribution while partially relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest population-wide social distancing observed in April, 2020. Given that social distancing interventions will be needed to maintain epidemic control until a vaccine becomes widely available, "chopping off the tail" to reduce the probability of superspreading events presents a promising option to alleviate the need for extreme general social distancing.

    View details for DOI 10.1016/j.epidem.2020.100430

    View details for PubMedID 33360871

  • Chopping the tail: how preventing superspreading can help to maintain COVID-19 control. medRxiv : the preprint server for health sciences Kain, M. P., Childs, M. L., Becker, A. D., Mordecai, E. A. 2020

    Abstract

    Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distribution where few individuals or events are responsible for the majority of transmission can result in explosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or late in epidemics. Anticipating and preventing superspreading events can produce large reductions in overall transmission rates. Here, we present a compartmental (SEIR) epidemiological model framework for estimating transmission parameters from multiple imperfectly observed data streams, including reported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the impact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct settings---Los Angeles and Santa Clara Counties, California; Seattle (King County), Washington; Atlanta (Dekalb and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. We find the effective reproduction number R E dropped below 1 rapidly following social distancing orders in mid-March, 2020 and remained there into June in Santa Clara County and Seattle, but climbed above 1 in late May in Los Angeles, Miami, and Atlanta, and has trended upward in all locations since April. With the fitted model, we ask: how does truncating the tail of the individual-level transmission rate distribution affect epidemic dynamics and control? We find interventions that truncate the transmission rate distribution while partially relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest population-wide social distancing observed in April, 2020. Given that social distancing interventions will be needed to maintain epidemic control until a vaccine becomes widely available, "chopping off the tail" to reduce the probability of superspreading events presents a promising option to alleviate the need for extreme general social distancing.

    View details for DOI 10.1101/2020.06.30.20143115

    View details for PubMedID 32637966

    View details for PubMedCentralID PMC7340192