Stanford Advisors


All Publications


  • Interstitial macrophages are a focus of viral takeover and inflammation in COVID-19 initiation in human lung. The Journal of experimental medicine Wu, T. T., Travaglini, K. J., Rustagi, A., Xu, D., Zhang, Y., Andronov, L., Jang, S., Gillich, A., Dehghannasiri, R., Martinez-Colon, G. J., Beck, A., Liu, D. D., Wilk, A. J., Morri, M., Trope, W. L., Bierman, R., Weissman, I. L., Shrager, J. B., Quake, S. R., Kuo, C. S., Salzman, J., Moerner, W. E., Kim, P. S., Blish, C. A., Krasnow, M. A. 2024; 221 (6)

    Abstract

    Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.

    View details for DOI 10.1084/jem.20232192

    View details for PubMedID 38597954

  • Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles. bioRxiv : the preprint server for biology Andronov, L., Han, M., Zhu, Y., Roy, A. R., Barentine, A. E., Garhyan, J., Qi, L. S., Moerner, W. E. 2023

    Abstract

    The SARS-CoV-2 viral infection transforms host cells and produces special organelles in many ways, and we focus on the replication organelle where the replication of viral genomic RNA (vgRNA) occurs. To date, the precise cellular localization of key RNA molecules and replication intermediates has been elusive in electron microscopy studies. We use super-resolution fluorescence microscopy and specific labeling to reveal the nanoscopic organization of replication organelles that contain vgRNA clusters along with viral double-stranded RNA (dsRNA) clusters and the replication enzyme, encapsulated by membranes derived from the host endoplasmic reticulum (ER). We show that the replication organelles are organized differently at early and late stages of infection. Surprisingly, vgRNA accumulates into distinct globular clusters in the cytoplasmic perinuclear region, which grow and accommodate more vgRNA molecules as infection time increases. The localization of ER labels and nsp3 (a component of the double-membrane vesicle, DMV) at the periphery of the vgRNA clusters suggests that replication organelles are enclosed by DMVs at early infection stages which then merge into vesicle packets as infection progresses. Precise co-imaging of the nanoscale cellular organization of vgRNA, dsRNA, and viral proteins in replication organelles of SARS-CoV-2 may inform therapeutic approaches that target viral replication and associated processes.

    View details for DOI 10.1101/2023.11.07.566110

    View details for PubMedID 37986994