Honors & Awards

  • Postdoctoral Award & Grant, Stanford Child Health Research Institute (2016)
  • Alan J. Bearden Outstanding Biophysical Thesis Award, UC Berkeley (2015)
  • NSF Graduate Fellow, National Science Foundation (2009)
  • UC Berkeley Distinguished Fellow, UC Berkeley (2009)
  • Fulbright Student, Fulbright Program (2008-2009)
  • Outstanding Graduate Student Instructor Award, UC Berkeley (2012)
  • Thomas Temple Hoopes Prize for Outstanding Senior Thesis, Harvard College (2008)

Professional Education

  • Ph.D., University of California Berkeley, Molecular and Cell Biology (2015)
  • A.B., Harvard College, Molecular and Cellular Biology (2008)

Stanford Advisors

All Publications

  • Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells PNAS Cattoglio, C., Zhang, E. T., Grubisic, I., Chiba, K., Fong, Y. W., Tjian, R. 2015: E2317–E2326

    View details for DOI 10.1073/pnas.1505569112

  • Architecture of the human XPC DNA repair and Stem Cell Coactivator Complex PNAS Zhang, E. T., He, Y., Grob, P., Fong, Y. W., Nogales, E., Tjian, R. 2015; 112 (48): 14817–14822

    View details for DOI 10.1073/pnas.1520104112

  • Structural basis of histone H2A-H2B recognition by the essential chaperone FACT NATURE Hondele, M., Stuwe, T., Hassler, M., Halbach, F., Bowman, A., Zhang, E. T., Nijmeijer, B., Kotthoff, C., Rybin, V., Amlacher, S., Hurt, E., Ladurner, A. G. 2013; 499 (7456): 111-?


    Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair. Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module embraces the α1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization.

    View details for DOI 10.1038/nature12242

    View details for Web of Science ID 000321285600044

    View details for PubMedID 23698368

  • Dynamics of CRISPR-Cas9 Genome Interrogation in Living Cells Science Knight, S. C., Xie, L., Deng, W., Guglielmi, B., Witkowsky, L. B., Bosanac, L., Zhang, E. T., El Beheiry, M., Masson, J., Dahan, M., Liu, Z., Doudna, J., Tjian, R. 2015; 350 (6262): 823-826

    View details for DOI 10.1126/science.aac6572

  • Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata in the Sonoran Desert Plant Ecology Day, T. A., Zhang, E. T., Ruhland, C. T. 2007; 193 (2): 185-194
  • A C-terminal motif targets Hedgehog to axons, coordinating assembly of the Drosophila eye and brain Dev Cell Chu, T., Chiu, M., Zhang, E., Kunes, S. 2006: 635–646