Professional Education

  • Doctor of Philosophy, Stanford University, BIOL-PHD (2012)
  • Bachelor of Arts, Princeton University, Ecology and Evolutionary Bio. (1999)
  • Master of Science, San Jose State University, Marine Science (2006)

Stanford Advisors

All Publications

  • Tissue Turnover Rates and Isotopic Trophic Discrimination Factors in the Endothermic Teleost, Pacific Bluefin Tuna (Thunnus orientalis) PLOS ONE Madigan, D. J., Litvin, S. Y., Popp, B. N., Carlisle, A. B., Farwell, C. J., Block, B. A. 2012; 7 (11)


    Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1-2914 days after a diet shift in captivity. Half-life values for (15)N turnover in white muscle and liver were 167 and 86 days, and for (13)C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for ?(15)N and 1.8 and 1.2‰ for ?(13)C, respectively. Our results demonstrate that turnover of (15)N and (13)C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. (15)N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle ?(15)N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.

    View details for DOI 10.1371/journal.pone.0049220

    View details for Web of Science ID 000311935800234

    View details for PubMedID 23145128

  • Stable Isotope Analysis Challenges Wasp-Waist Food Web Assumptions in an Upwelling Pelagic Ecosystem SCIENTIFIC REPORTS Madigan, D. J., Carlisle, A. B., Dewar, H., Snodgrass, O. E., Litvin, S. Y., Micheli, F., Block, B. A. 2012; 2


    Eastern boundary currents are often described as 'wasp-waist' ecosystems in which one or few mid-level forage species support a high diversity of larger predators that are highly susceptible to fluctuations in prey biomass. The assumption of wasp-waist control has not been empirically tested in all such ecosystems. This study used stable isotope analysis to test the hypothesis of wasp-waist control in the southern California Current large marine ecosystem (CCLME). We analyzed prey and predator tissue for ?¹³C and ?¹?N and used Bayesian mixing models to provide estimates of CCLME trophic dynamics from 2007-2010. Our results show high omnivory, planktivory by some predators, and a higher degree of trophic connectivity than that suggested by the wasp-waist model. Based on this study period, wasp-waist models oversimplify trophic dynamics within the CCLME and potentially other upwelling, pelagic ecosystems. Higher trophic connectivity in the CCLME likely increases ecosystem stability and resilience to perturbations.

    View details for DOI 10.1038/srep00654

    View details for Web of Science ID 000308807000002

    View details for PubMedID 22977729

  • Using Stable Isotope Analysis to Understand the Migration and Trophic Ecology of Northeastern Pacific White Sharks (Carcharodon carcharias) PLOS ONE Carlisle, A. B., Kim, S. L., Semmens, B. X., Madigan, D. J., Jorgensen, S. J., Perle, C. R., Anderson, S. D., Chapple, T. K., Kanive, P. E., Block, B. A. 2012; 7 (2)


    The white shark (Carcharodon carcharias) is a wide-ranging apex predator in the northeastern Pacific (NEP). Electronic tagging has demonstrated that white sharks exhibit a regular migratory pattern, occurring at coastal sites during the late summer, autumn and early winter and moving offshore to oceanic habitats during the remainder of the year, although the purpose of these migrations remains unclear. The purpose of this study was to use stable isotope analysis (SIA) to provide insight into the trophic ecology and migratory behaviors of white sharks in the NEP. Between 2006 and 2009, 53 white sharks were biopsied in central California to obtain dermal and muscle tissues, which were analyzed for stable isotope values of carbon (?(13)C) and nitrogen (?(15)N). We developed a mixing model that directly incorporates movement data and tissue incorporation (turnover) rates to better estimate the relative importance of different focal areas to white shark diet and elucidate their migratory behavior. Mixing model results for muscle showed a relatively equal dietary contribution from coastal and offshore regions, indicating that white sharks forage in both areas. However, model results indicated that sharks foraged at a higher relative rate in coastal habitats. There was a negative relationship between shark length and muscle ?(13)C and ?(15)N values, which may indicate ontogenetic changes in habitat use related to onset of maturity. The isotopic composition of dermal tissue was consistent with a more rapid incorporation rate than muscle and may represent more recent foraging. Low offshore consumption rates suggest that it is unlikely that foraging is the primary purpose of the offshore migrations. These results demonstrate how SIA can provide insight into the trophic ecology and migratory behavior of marine predators, especially when coupled with electronic tagging data.

    View details for DOI 10.1371/journal.pone.0030492

    View details for Web of Science ID 000302741300013

    View details for PubMedID 22355313

  • Seasonal changes in depth distribution of salmon sharks (Lamna ditropis) in Alaskan waters: implications for foraging ecology CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES Carlisle, A. B., Perle, C. R., Goldman, K. J., Block, B. A. 2011; 68 (11): 1905-1921

    View details for DOI 10.1139/F2011-105

    View details for Web of Science ID 000298441500004

  • Tidal movements of female leopard sharks (Triakis semifasciata) in Elkhorn Slough, California ENVIRONMENTAL BIOLOGY OF FISHES Carlisle, A. B., Starr, R. M. 2010; 89 (1): 31-45
  • Habitat use, residency, and seasonal distribution of female leopard sharks Triakis semifasciata in Elkhorn Slough, California MARINE ECOLOGY PROGRESS SERIES Carlisle, A. B., Starr, R. M. 2009; 380: 213-228

    View details for DOI 10.3354/meps07907

    View details for Web of Science ID 000265907000018