All Publications


  • Interferometric scattering for fluorescence-free electrokinetic trapping of single nanoparticles in free solution Lavania, A. A., Squires, A. H., Dahlberg, P. D., Moerner, W. E., Gregor, Koberling, F., Erdmann, R. SPIE-INT SOC OPTICAL ENGINEERING. 2020

    View details for DOI 10.1117/12.2546638

    View details for Web of Science ID 000546225400012

  • Interferometric Scattering Enables Fluorescence-Free Electrokinetic Trapping of Single Nanoparticles in Free Solution. Nano letters Squires, A. H., Lavania, A. A., Dahlberg, P. D., Moerner, W. E. 2019

    Abstract

    Anti-Brownian traps confine single particles in free solution by closed-loop feedback forces that directly counteract Brownian motion. Extended-duration measurements on trapped objects allow detailed characterization of photophysical and transport properties as well as observation of infrequent or rare dynamics. However, this approach has been generally limited to particles that can be tracked by fluorescence emission. Here we present the Interferometric Scattering Anti-Brownian ELectrokinetic (ISABEL) trap, which uses interferometric scattering rather than fluorescence to monitor particle position. By decoupling the ability to track (and therefore trap) a particle from collection of its spectroscopic data, the ISABEL trap enables confinement and extended study of single particles that do not fluoresce, only weakly fluoresce, or exhibit intermittent fluorescence or photobleaching. This new technique significantly expands the range of nanoscale objects that may be investigated at the single-particle level in free solution.

    View details for DOI 10.1021/acs.nanolett.9b01514

    View details for PubMedID 31117762