Stanford Advisors

All Publications

  • Defect-Induced Band-Edge Reconstruction of a Bismuth-Halide Double Perovskite for Visible-Light Absorption JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Slavney, A. H., Leppert, L., Bartesaghi, D., Gold-Parker, A., Toney, M. F., Savenije, T. J., Neaton, J. B., Karunadasa, H. I. 2017; 139 (14): 5015-5018


    Halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs2AgBiBr6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1's bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyed perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH3NH3)PbI3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1's band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX3 absorbers.

    View details for DOI 10.1021/jacs.7b01629

    View details for Web of Science ID 000399353800009

    View details for PubMedID 28353345

  • A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. Journal of the American Chemical Society Slavney, A. H., Hu, T., Lindenberg, A. M., Karunadasa, H. I. 2016; 138 (7): 2138-2141


    Despite the remarkable rise in efficiencies of solar cells containing the lead-halide perovskite absorbers RPbX3 (R = organic cation; X = Br(-) or I(-)), the toxicity of lead remains a concern for the large-scale implementation of this technology. This has spurred the search for lead-free materials with similar optoelectronic properties. Here, we use the double-perovskite structure to incorporate nontoxic Bi(3+) into the perovskite lattice in Cs2AgBiBr6 (1). The solid shows a long room-temperature fundamental photoluminescence (PL) lifetime of ca. 660 ns, which is very encouraging for photovoltaic applications. Comparison between single-crystal and powder PL decay curves of 1 suggests inherently high defect tolerance. The material has an indirect bandgap of 1.95 eV, suited for a tandem solar cell. Furthermore, 1 is significantly more heat and moisture stable compared to (MA)PbI3. The extremely promising optical and physical properties of 1 shown here motivate further exploration of both inorganic and hybrid halide double perovskites for photovoltaics and other optoelectronics.

    View details for DOI 10.1021/jacs.5b13294

    View details for PubMedID 26853379