All Publications


  • Diamond formation kinetics in shock-compressed C─H─O samples recorded by small-angle x-ray scattering and x-ray diffraction. Science advances He, Z., Rodel, M., Lutgert, J., Bergermann, A., Bethkenhagen, M., Chekrygina, D., Cowan, T. E., Descamps, A., French, M., Galtier, E., Gleason, A. E., Glenn, G. D., Glenzer, S. H., Inubushi, Y., Hartley, N. J., Hernandez, J., Heuser, B., Humphries, O. S., Kamimura, N., Katagiri, K., Khaghani, D., Lee, H. J., McBride, E. E., Miyanishi, K., Nagler, B., Ofori-Okai, B., Ozaki, N., Pandolfi, S., Qu, C., Ranjan, D., Redmer, R., Schoenwaelder, C., Schuster, A. K., Stevenson, M. G., Sueda, K., Togashi, T., Vinci, T., Voigt, K., Vorberger, J., Yabashi, M., Yabuuchi, T., Zinta, L. M., Ravasio, A., Kraus, D. 2022; 8 (35): eabo0617

    Abstract

    Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and H2O systems, respectively. Here, we investigate a stoichiometric mixture of C and H2O by shock-compressing polyethylene terephthalate (PET) plastics and performing in situ x-ray probing. We observe diamond formation at pressures between 72 ± 7 and 125 ± 13 GPa at temperatures ranging from ~3500 to ~6000 K. Combining x-ray diffraction and small-angle x-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H2O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets' magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock compression of cheap PET plastics.

    View details for DOI 10.1126/sciadv.abo0617

    View details for PubMedID 36054354

  • Ultrafast visualization of incipient plasticity in dynamically compressed matter. Nature communications Mo, M., Tang, M., Chen, Z., Peterson, J. R., Shen, X., Baldwin, J. K., Frost, M., Kozina, M., Reid, A., Wang, Y., E, J., Descamps, A., Ofori-Okai, B. K., Li, R., Luo, S., Wang, X., Glenzer, S. 2022; 13 (1): 1055

    Abstract

    Plasticity is ubiquitous and plays a critical role in material deformation and damage; it inherently involves the atomistic length scale and picosecond time scale. A fundamental understanding of the elastic-plastic deformation transition, in particular, incipient plasticity, has been a grand challenge in high-pressure and high-strain-rate environments, impeded largely by experimental limitations on spatial and temporal resolution. Here, we report femtosecond MeV electron diffraction measurements visualizing the three-dimensional (3D) response of single-crystal aluminum to the ultrafast laser-induced compression. We capture lattice transitioning from a purely elastic to a plastically relaxed state within 5 ps, after reaching an elastic limit of~25 GPa. Our results allow the direct determination of dislocation nucleation and transport that constitute the underlying defect kinetics of incipient plasticity. Large-scale molecular dynamics simulations show good agreement with the experiment and provide an atomic-level description of the dislocation-mediated plasticity.

    View details for DOI 10.1038/s41467-022-28684-z

    View details for PubMedID 35217665