Agnetta Cleland
Ph.D. Student in Applied Physics, admitted Autumn 2017
All Publications
-
Quantum state preparation and tomography of entangled mechanical resonators.
Nature
2022; 604 (7906): 463-467
Abstract
Precisely engineered mechanical oscillators keep time, filter signals and sense motion, making them an indispensable part of the technological landscape of today. These unique capabilities motivate bringing mechanical devices into the quantum domain by interfacing them with engineered quantum circuits. Proposals to combine microwave-frequency mechanical resonators with superconducting devices suggest the possibility of powerful quantum acoustic processors1-3. Meanwhile, experiments in several mechanical systems have demonstrated quantum state control and readout4,5, phonon number resolution6,7 and phonon-mediated qubit-qubit interactions8,9. At present, these acoustic platforms lack processors capable of controlling the quantum states of several mechanical oscillators with a single qubit and the rapid quantum non-demolition measurements of mechanical states needed for error correction. Here we use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators. Our device is capable of fast qubit-mechanics swap operations, which we use to deterministically manipulate the mechanical states. By placing the qubit into the strong dispersive regime with both mechanical resonators simultaneously, we determine the phonon number distributions of the resonators by means of Ramsey measurements. Finally, we present quantum tomography of the prepared nonclassical and entangled mechanical states. Our result represents a concrete step towards feedback-based operation of a quantum acoustic processor.
View details for DOI 10.1038/s41586-022-04500-y
View details for PubMedID 35444325
-
Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature
APPLIED PHYSICS LETTERS
2021; 118 (12)
View details for DOI 10.1063/5.0034909
View details for Web of Science ID 000632733300001
-
S-band delay lines in suspended lithium niobate
JOURNAL OF APPLIED PHYSICS
2020; 127 (5)
View details for DOI 10.1063/1.5126428
View details for Web of Science ID 000513135300009
-
Piezo-optomechanics in lithium niobate on silicon-on-insulator for microwave-to-optics transduction
IEEE. 2020
View details for Web of Science ID 000612090002012
-
Mechanical Purcell filters for microwave quantum machines
APPLIED PHYSICS LETTERS
2019; 115 (26)
View details for DOI 10.1063/1.5111151
View details for Web of Science ID 000505613600017
-
Microwave Quantum Acoustic Processor
IEEE. 2019: 255–58
View details for Web of Science ID 000494461700066