Honors & Awards


  • Nominated for International Society of Computational Biology Fight Against Ebola Award, International Society of Computational Biology (ISCB) (July 2016)
  • Research Scholarship for training of biological applications of microfluidics devices, imec (May 2013)

Professional Education


  • Doctor of Philosophy, Katholieke Universiteit Leuven (2017)
  • Master of Science, Swedish University of Agricultural Sciences (2013)

Current Research and Scholarly Interests


The focus of the research is to understand the impact of genomic variations appear in the experimental models on biological networks and pathways. To elaborate and interpret our findings from opioid addict mouse models we integrate multi-omics data. The integration of omics data can provide details of driver mutations and new outline of genotype to phenotype relationship.

All Publications


  • High Throughput Computational Mouse Genetic Analysis biorxiv Arslan, A., et al 2020
  • The Phosphatidylethanolamine Biosynthesis Pathway Provides a New Target for Cancer Chemotherapy. Journal of hepatology Guan, Y., Chen, X., Wu, M., Zhu, W., Arslan, A., Takeda, S., Nguyen, M. H., Majeti, R., Thomas, D., Zheng, M., Peltz, G. 2019

    Abstract

    Since iPSC human develop into hepatic organoids through stages that resemble human embryonic liver development, they can be used to study developmental processes and disease pathology. Therefore, we examined the early stages of hepatic organoid formation to identify key pathways affecting early liver development.Single cell RNA-sequencing and metabolomic analysis was performed on developing organoid cultures at the iPSC, hepatoblast (day 9) and mature organoid stage. The importance of the phosphatidyl-ethanolamine biosynthesis pathway to early liver development was examined in developing organoid cultures using iPSC with a CRISPR-mediated gene knockout and an over the counter medication (meclizine) that inhibits the rate-limiting enzyme in this pathway. Meclizine's effect on the growth of a human hepatocarcinoma cell line in a xenotransplantation model and on the growth of acute myeloid leukemia cells in vitro was also examined.Transcriptomic and metabolomic analysis of organoid development indicated that the phosphatidyl-ethanolamine biosynthesis pathway is essential for early liver development. Unexpectedly, early hepatoblasts were selectively sensitive to the cytotoxic effect of meclizine. We demonstrate that meclizine could be repurposed for use in a new synergistic combination therapy for primary liver cancer: a glycolysis inhibitor reprograms cancer cell metabolism to make it susceptible to the cytotoxic effect of meclizine. This combination inhibited the growth of a human liver carcinoma cell line in vitro; and in a xenotransplantation model without causing significant side effets. This drug combination was also highly active against acute myeloid leukemic cells.Our data indicates that the phosphatidyl-ethanolamine biosynthesis is a targetable pathway for cancer; and that meclizine may have clinical efficacy as a repurposed anti-cancer drug when used as part of a new combination therapy.

    View details for DOI 10.1016/j.jhep.2019.11.007

    View details for PubMedID 31760071

  • Pyntheon: A Functional Analysis Framework for Protein Modifications and Mutations of 83 Model Organisms Pyntheon: A Functional Analysis Framework for Protein Modifications and Mutations of 83 Model Organisms Arslan, A. 2019
  • yMap: an automated method to map yeast variants to protein modifications and functional regions Bioinformatics Arslan, A., Noort, V. v. 2017
  • Evolutionary conservation of Ebola virus proteins predicts important functions at residue level Bioinformatics Arslan, A., Noort, V. v. 2017
  • Adaptation to High Ethanol Reveals Complex Evolutionary Pathways PLOS GENETICS Voordeckers, K., Kominek, J., Das, A., Espinosa-Cantu, A., De Maeyer, D., Arslan, A., Van Pee, M., van der Zande, E., Meert, W., Yang, Y., Zhu, B., Marchal, K., DeLuna, A., Van Noort, V., Jelier, R., Verstrepen, K. J. 2015; 11 (11): e1005635

    Abstract

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.

    View details for DOI 10.1371/journal.pgen.1005635

    View details for Web of Science ID 000366179000019

    View details for PubMedID 26545090

    View details for PubMedCentralID PMC4636377