All Publications


  • Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS Mercado-Pagan, A. E., Stahl, A. M., Ramseier, M. L., Behn, A. W., Yang, Y. 2016; 64: 61-73

    Abstract

    The design of bioresorbable synthetic small diameter (<6mm) vascular grafts (SDVGs) capable of sustaining long-term patency and endothelialization is a daunting challenge in vascular tissue engineering. Here, we synthesized a family of biocompatible and biodegradable polycaprolactone (PCL) urethane macromers to fabricate hollow fiber membranes (HFMs) as SDVG candidates, and characterized their mechanical properties, degradability, hemocompatibility, and endothelial development. The HFMs had smooth surfaces and porous internal structures. Their tensile stiffness ranged from 0.09 to 0.11N/mm and their maximum tensile force from 0.86 to 1.03N, with minimum failure strains of approximately 130%. Permeability varied from 1 to 14×10(-6)cm/s, burst pressures from 1158 to 1468mmHg, and compliance from 0.52 to 1.48%/100mmHg. The suture retention forces ranged from 0.55 to 0.81N. HFMs had slow degradation profiles, with 15 to 30% degradation after 8weeks. Human endothelial cells proliferated well on the HFMs, creating stable cell layer coverage. Hemocompatibility studies demonstrated low hemolysis (<2%), platelet activation, and protein adsorption. There were no significant differences in the hemocompatibility of HFMs in the absence and presence of endothelial layers. These encouraging results suggest great promise of our newly developed materials and biodegradable elastomeric HFMs as SDVG candidates.

    View details for DOI 10.1016/j.msec.2016.03.068

    View details for Web of Science ID 000376547700008

    View details for PubMedID 27127029

  • Vascularization in Bone Tissue Engineering Constructs ANNALS OF BIOMEDICAL ENGINEERING Mercado-Pagan, A. E., Stahl, A. M., Shanjani, Y., Yang, Y. 2015; 43 (3): 718-729

    Abstract

    Vascularization of large bone grafts is one of the main challenges of bone tissue engineering (BTE), and has held back the clinical translation of engineered bone constructs for two decades so far. The ultimate goal of vascularized BTE constructs is to provide a bone environment rich in functional vascular networks to achieve efficient osseointegration and accelerate restoration of function after implantation. To attain both structural and vascular integration of the grafts, a large number of biomaterials, cells, and biological cues have been evaluated. This review will present biological considerations for bone function restoration, contemporary approaches for clinical salvage of large bone defects and their limitations, state-of-the-art research on the development of vascularized bone constructs, and perspectives on evaluating and implementing novel BTE grafts in clinical practice. Success will depend on achieving full graft integration at multiple hierarchical levels, both between the individual graft components as well as between the implanted constructs and their surrounding host tissues. The paradigm of vascularized tissue constructs could not only revolutionize the progress of BTE, but could also be readily applied to other fields in regenerative medicine for the development of new innovative vascularized tissue designs.

    View details for DOI 10.1007/s10439-015-1253-3

    View details for Web of Science ID 000351742500018

    View details for PubMedID 25616591