
Alexandra Konings
Assistant Professor of Earth System Science and, by courtesy, of Geophysics & Center Fellow, by courtesy, at the Woods Institute for the Environment
Bio
Alexandra Konings is a ecohydrologist - she is interested in how ecosystems and the carbon cycle respond to variations in water availability at large scales (and vice versa). Research questions in the Konings lab span a range of ecosystem properties, but many of them surround the role of vegetation water content in predicting plant health and its associated fluxes and growth. She holds SB and PhD degrees from MIT (working with Dara Entekhabi), and a M.S. from Duke University (working with Gaby Katul). She joined the Department of Earth System Science as an assistant professor in 2016 after two short postdoctoral stints at Columbia University (working with Pierre Gentine) and the NASA Jet Propulsion Laboratory (working with Dave Schimel, Sassan Saatchi, and others). She received the NASA New (Early Career) Investigator Award in 2018 and the NSF CAREER in 2020.
Academic Appointments
-
Assistant Professor, Earth System Science
-
Center Fellow (By courtesy), Stanford Woods Institute for the Environment
-
Assistant Professor (By courtesy), Geophysics
Administrative Appointments
-
Faculty Affiliate, Stanford Woods Institute for the Environment (2016 - Present)
-
Assistant Professor, Stanford Department of Earth System Science (2016 - Present)
-
Visiting Postdoc, NASA Jet Propulsion Laboratory (2016 - 2016)
-
Visiting Postdoc, Columbia University (2015 - 2016)
-
NASA Earth and Space Science Fellow, Massachusetts Institute of Technology (2012 - 2015)
-
NSF Graduate Research Fellow, Massachusetts Institute of Technology (2011 - 2011)
-
NSF Graduate Research Fellow, Duke University (2009 - 2011)
Honors & Awards
-
CAREER, NSF (2020-2025)
-
New (Early Career) Investigator Award, NASA (2018-2021)
-
Group Achievement Award: AirMOSS Implementation Team, NASA (2016)
-
Best Doctoral Thesis Award, MIT Department of Civil and Environmental Engineering (2015-2016)
-
Earth and Space Science Fellowship, NASA (2012-2015)
-
Graduate Research Fellowship, National Science Foundation (2009-2012)
-
James B. Duke Fellowship, Duke University (2009-2011)
Boards, Advisory Committees, Professional Organizations
-
Member, Jasper Ridge Biological Preserve Faculty Advisory Committee (2017 - Present)
-
Member, AGU Hydrology Technical Committee on Remote Sensing (2016 - Present)
-
Member, IEEE Geoscience and Remote Sensing Society (2010 - Present)
-
Member, American Geophysical Union (2008 - Present)
Professional Education
-
Ph.D., Massachusetts Institute of Technology, Hydrology (2015)
-
M.S., Duke University, Environmental Science (2011)
-
S.B., Massachusetts Institute of Technology, Environmental Engineering Science (2009)
2020-21 Courses
- Biosphere-Atmosphere Interactions
EARTHSYS 123A, EARTHSYS 223, ESS 123, ESS 223 (Win) - Remote Sensing of Hydrology
CEE 260D, ESS 224 (Spr) -
Independent Studies (3)
- Curricular Practical Training
ESS 401 (Sum) - Directed Research
EARTHSYS 250 (Win) - Graduate Research
ESS 400 (Aut, Win, Spr, Sum)
- Curricular Practical Training
-
Prior Year Courses
2019-20 Courses
- Biosphere-Atmosphere Interactions
EARTHSYS 123A, EARTHSYS 223, ESS 123, ESS 223 (Win) - Remote Sensing of Hydrology
CEE 260D, ESS 224 (Spr)
2018-19 Courses
- Ecophysiology and Land Surface Processes
ESS 223 (Win) - Remote Sensing of Hydrology
CEE 260D, ESS 224 (Spr)
2017-18 Courses
- Ecophysiology and Land Surface Processes
BIO 125, ESS 123, ESS 223 (Aut) - Remote Sensing of Hydrology
ESS 124, ESS 224 (Spr)
- Biosphere-Atmosphere Interactions
Stanford Advisees
-
Doctoral Dissertation Advisor (AC)
Nathan Dadap -
Master's Program Advisor
Lilla Petruska -
Doctoral (Program)
Natan Holtzman, Krishna Rao, Matthew Worden
All Publications
-
Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration
NATURE CLIMATE CHANGE
2020
View details for DOI 10.1038/s41558-020-0781-5
View details for Web of Science ID 000537042800011
-
Carbon Flux Variability from a Relatively Simple Ecosystem Model with Assimilated Data is Consistent with Terrestrial Biosphere Model Estimates
Journal of Advances in Modeling Earth Systems
2020; 12: e2019MS001889
View details for DOI 10.1029/2019MS001889
-
Validation practices for satellite soil moisture retrievals: What are (the) errors?
Remote Sensing of Environment
2020; 224: 111806
View details for DOI 10.1016/j.rse.2020.111806
-
Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality
REMOTE SENSING OF ENVIRONMENT
2019; 227: 125–36
View details for DOI 10.1016/j.rse.2019.03.026
View details for Web of Science ID 000468720300009
-
Global satellite-driven estimates of heterotrophic respiration
BIOGEOSCIENCES
2019; 16 (11): 2269–84
View details for DOI 10.5194/bg-16-2269-2019
View details for Web of Science ID 000470702100002
-
Physics-Based Modeling of Active and Passive Microwave Covariations Over Vegetated Surfaces
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
2019; 57 (2): 788–802
View details for DOI 10.1109/TGRS.2018.2860630
View details for Web of Science ID 000456936500012
-
Macro to micro: microwave remote sensing of plant water content for physiology and ecology
NEW PHYTOLOGIST
2019; 223: 1166-1172
Abstract
Although primarily valued for their suitability for oceanographic applications and soil moisture estimation, microwave remote sensing observations are also sensitive to plant water content (Mw ). Since Mw depends on both plant water status and biomass, these observations have the potential to be useful for a range of plant drought response studies. In this paper, we introduce the principles behind microwave remote sensing observations to illustrate how they are sensitive to plant water content and discuss the relationship between landscape-scale Mw and common stand-scale metrics, including plant-scale relative water content, live fuel moisture content and leaf water potential. Lastly, we discuss how various sensor types can be leveraged for specific applications depending on the spatio-temporal resolution needed.
View details for DOI 10.1111/nph.15808
-
Simultaneous retrieval of global-scale vegetation optical depth, surface roughness, and soil moisture using X-band AMSR-E observations
Remote Sensing of Environment
2019; 234: 111473
View details for DOI 10.1016/j.rse.2019.111473
-
Satellite soil moisture observatins predict burned area in Southeast Asian peatlands
ENVIRONMENTAL RESEARCH LETTERS
2019; 14
View details for DOI 10.1088/1748-9326/ab3891
-
Beyond soil water potential: An expanded view on isohydricity including land–atmosphere interactions and phenology
PLANT, CELL, AND ENVIRONMENT
2019; 42: 1802-1815
View details for DOI 10.1111/pce.13517
-
Moisture pulse-reserve in the soil-plant continuum observed across biomes
NATURE PLANTS
2018; 4 (12): 1026–33
Abstract
The degree to which individual pulses of available water drive plant activity across diverse biomes and climates is not well understood. It has previously only been investigated in a few dryland locations. Here, plant water uptake following pulses of surface soil moisture, an indicator for the pulse-reserve hypothesis, is investigated across South America, Africa and Australia with satellite-based estimates of surface soil and canopy water content. Our findings show that this behaviour is widespread: occurring over half of the vegetated landscapes. We estimate spatially varying soil moisture thresholds at which plant water uptake ceases, noting dependence on soil texture and proximity to the wilting point. The soil type and biome-dependent soil moisture threshold and the plant soil water uptake patterns at the scale of Earth system models allow a unique opportunity to test and improve model parameterization of vegetation function under water limitation.
View details for DOI 10.1038/s41477-018-0304-9
View details for Web of Science ID 000454576600012
View details for PubMedID 30518832
-
Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products
REMOTE SENSING OF ENVIRONMENT
2018; 204: 260-275
View details for DOI 10.1016/j.rse.2017.10.026
-
Hydraulic diversity of forests regulates ecosystem resilience during drought
NATURE
2018; 561: 538-541
View details for DOI 10.1038/s41586-018-0539-7
-
L-band vegetation optical depth seasonal metrics for crop yield assessment
REMOTE SENSING OF ENVIRONMENT
2018
View details for DOI 10.1016/j.rse.2018.04.049
-
Tall Amazonian forests are less sensitive to precipitation variability
NATURE GEOSCIENCE
2018: 405-409
View details for DOI 10.1038/s41561-018-0133-5
-
Characterization of vegetation and soil scattering mechanisms across different biomes using P-band SAR polarimetry
REMOTE SENSING OF ENVIRONMENT
2018: 107-117
View details for DOI 10.1016/j.rse.2018.02.032
-
The global distribution and dynamics of surface soil moisture
NATURE GEOSCIENCE
2017; 10: 100-104
View details for DOI 10.1038/ngeo2868
-
Interacting effects of leaf water potential and biomass on vegetation optical depth
JOURNAL OF GEOPHYSICAL RESEARCH - BIOGEOSCIENCES
2017; 122
View details for DOI 10.1002/2017JG004145
-
Estimating global ecosystem iso/anisohydry using active and passive microwave satellite data
JOURNAL OF GEOPHYSICAL RESEARCH - BIOGEOSCIENCES
2017; 122
View details for DOI 10.1002/2017JG003958
-
Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence
BIOGEOSCIENCES
2017; 14: 4101-4124
Abstract
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H and GPP from 2007 to 2015 at 1° × 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analysing WECANN retrievals across three extreme drought and heatwave events demonstrates the capability of the retrievals in capturing the extent of these events. Uncertainty estimates of the retrievals are analysed and the inter-annual variability in average global and regional fluxes show the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.
View details for DOI 10.5194/bg-14-4101-2017
View details for PubMedCentralID PMC5744880
-
Relationship between vegetation microwave optical depth and cross-polarized backscatter from multi-year Aquarius observations.
IEEE JOURNAL OF SELECTED TOPICS IN EARTH OBSERVATIONS AND REMOTE SENSING
2017
View details for DOI 10.1109/JSTARS.2017.2716638
-
L-band vegetation optical depth and scattering albedo estimation from SMAP
REMOTE SENSING OF ENVIRONMENT
2017; 198: 460-470
View details for DOI 10.1016/j.rse.2017.06.037
-
Regionally strong feedbacks between the atmosphere and terrestrial biosphere
NATURE GEOSCIENCE
2017; 10: 410–414
View details for DOI 10.1038/ngeo2957
-
Active microwave observations of diurnal and seasonal variations of canopy water content across the humid African tropical forests
GEOPHYSICAL RESEARCH LETTERS
2017; 44: 2290-2299
View details for DOI 10.1002/2016GL072388
-
Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation
NATURE GEOSCIENCE
2017; 10: 284-288
View details for DOI 10.1038/ngeo2903
-
Global variations in ecosystem scale isohydricity
GLOBAL CHANGE BIOLOGY
2017; 23 (2): 891-905
View details for DOI 10.1111/gcb.13389
-
Triple collocation for binary and categorical variables: Application to validating landscape freeze/thaw retrievals
REMOTE SENSING OF ENVIRONMENT
2016; 176: 31-42
View details for DOI 10.1016/j.rse.2016.01.010
View details for Web of Science ID 000372383200003
-
Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations
REMOTE SENSING OF ENVIRONMENT
2016; 172: 178-189
View details for DOI 10.1016/j.rse.2015.11.009
View details for Web of Science ID 000366764500014
-
L-Band Radar Soil Moisture Retrieval Without Ancillary Information
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
2015; 8 (12): 5526-5540
View details for DOI 10.1109/JSTARS.2015.2496326
View details for Web of Science ID 000370519700014
-
How Many Parameters Can Be Maximally Estimated From a Set of Measurements?
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
2015; 12 (5): 1081-1085
View details for DOI 10.1109/LGRS.2014.2381641
View details for Web of Science ID 000351412200033
-
Characterization of precipitation product errors across the United States using multiplicative triple collocation
HYDROLOGY AND EARTH SYSTEM SCIENCES
2015; 19 (8): 3489-3503
View details for DOI 10.5194/hess-19-3489-2015
View details for Web of Science ID 000360653600011
-
The Effect of Variable Soil Moisture Profiles on P-Band Backscatter
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
2014; 52 (10): 6315-6325
View details for DOI 10.1109/TGRS.2013.2296035
View details for Web of Science ID 000337173200026
-
Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target
GEOPHYSICAL RESEARCH LETTERS
2014; 41 (17): 6229-6236
View details for DOI 10.1002/2014GL061322
View details for Web of Science ID 000342757400023
-
Thermodynamics of an idealized hydrologic cycle
WATER RESOURCES RESEARCH
2012; 48
View details for DOI 10.1029/2011WR011264
View details for Web of Science ID 000304253400002
-
A phenomenological model for the flow resistance over submerged vegetation
WATER RESOURCES RESEARCH
2012; 48
View details for DOI 10.1029/2011WR011000
View details for Web of Science ID 000300829700003
-
Mean Velocity Profile in a Sheared and Thermally Stratified Atmospheric Boundary Layer
PHYSICAL REVIEW LETTERS
2011; 107 (26)
Abstract
A stability correction function φ(m)(ζ) that accounts for distortions to the logarithmic mean velocity profile (MVP) in the lower atmosphere caused by thermal stratification was proposed by Monin and Obukhov in the 1950s using dimensional analysis. Its universal character was established from many field experiments. However, theories that describe the canonical shape of φ(m)(ζ) are still lacking. A previous link between the spectrum of turbulence and the MVP is expanded here to include the effects of thermal stratification on the turbulent kinetic energy dissipation rate and eddy-size anisotropy. The resulting theory provides a novel explanation for the power-law exponents and coefficients already reported for φ(m)(ζ) from numerous field experiments.
View details for DOI 10.1103/PhysRevLett.107.268502
View details for Web of Science ID 000298609000019
View details for PubMedID 22243189
-
Drought sensitivity of patterned vegetation determined by rainfall-land surface feedbacks
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
2011; 116
View details for DOI 10.1029/2011JG001748
View details for Web of Science ID 000296150900001
-
Unsteady overland flow on flat surfaces induced by spatial permeability contrasts
ADVANCES IN WATER RESOURCES
2011; 34 (8): 1049-1058
View details for DOI 10.1016/j.advwatres.2011.05.012
View details for Web of Science ID 000293320700010
-
Comparative hydrology across AmeriFlux sites: The variable roles of climate, vegetation, and groundwater
WATER RESOURCES RESEARCH
2011; 47
View details for DOI 10.1029/2010WR009797
View details for Web of Science ID 000292844600003
-
Effect of Radiative Transfer Uncertainty on L-Band Radiometric Soil Moisture Retrieval
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
2011; 49 (7): 2686-2698
View details for DOI 10.1109/TGRS.2011.2105495
View details for Web of Science ID 000292111800018
-
The rainfall-no rainfall transition in a coupled land-convective atmosphere system
GEOPHYSICAL RESEARCH LETTERS
2010; 37
View details for DOI 10.1029/2010GL043967
View details for Web of Science ID 000280584700003
-
Conditioning Stochastic Rainfall Replicates on Remote Sensing Data
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
2009; 47 (8): 2436-2449
View details for DOI 10.1109/TGRS.2009.2016413
View details for Web of Science ID 000268166500004