As a PhD candidate in the Emmett Interdisciplinary Program in Environment and Resources, I investigate links between exposure to environmental contaminants and health outcomes in early life. My dissertation explore links between drinking water contamination in California's Central Valley and adverse birth outcomes. Another area of research investigates the impact of ambient particulate matter pollution on child respiratory health in Dhaka, Bangladesh. Broadly, I hope to use data science and interdisciplinary, community-engaged methods to understand the cumulative impact of chemical contaminants on communities and public health.

All Publications

  • Nitrate in Drinking Water during Pregnancy and Spontaneous Preterm Birth: A Retrospective Within-Mother Analysis in California. Environmental health perspectives Sherris, A. R., Baiocchi, M., Fendorf, S., Luby, S. P., Yang, W., Shaw, G. M. 2021; 129 (5): 57001


    BACKGROUND: Nitrate is a widespread groundwater contaminant and a leading cause of drinking water quality violations in California. Associations between nitrate exposure and select adverse birth outcomes have been suggested, but few studies have examined gestational exposures to nitrate and risk of preterm birth (before 37 wk gestation).OBJECTIVE: We investigated the association between elevated nitrate in drinking water and spontaneous preterm birth through a within-mother retrospective cohort study of births in California.METHODS: We acquired over 6 million birth certificate records linked with Office of Statewide Health Planning and Development hospital discharge data for California births from 2000-2011. We used public water system monitoring records to estimate nitrate concentrations in drinking water for each woman's residence during gestation. After exclusions, we constructed a sample of 1,443,318 consecutive sibling births in order to conduct a within-mother analysis. We used separate conditional logistic regression models to estimate the odds of preterm birth at 20-31 and 32-36 wk, respectively, among women whose nitrate exposure changed between consecutive pregnancies.RESULTS: Spontaneous preterm birth at 20-31 wk was increased in association with tap water nitrate concentrations during pregnancy of 5 to <10mg/L [odds ratio (OR)=1.47; 95% confidence interval (CI): 1.29, 1.67] and ≥10mg/L (OR=2.52; 95% CI: 1.49, 4.26) compared with <5mg/L (as nitrogen). Corresponding estimates for spontaneous preterm birth at 32-36 wk were positive but close to the null for 5 to <10mg/L nitrate (OR=1.08; 95% CI: 1.02, 1.15) and for ≥10mg/L nitrate (OR=1.05; 95% CI: 0.85, 1.31) vs. <5mg/L nitrate. Our findings were similar in several secondary and sensitivity analyses, including in a conventional individual-level design.DISCUSSION: The results suggest that nitrate in drinking water is associated with increased odds of spontaneous preterm birth. Notably, we estimated modestly increased odds associated with tap water nitrate concentrations of 5 to <10mg/L (below the federal drinking water standard of 10mg/L) relative to <5mg/L.

    View details for DOI 10.1289/EHP8205

    View details for PubMedID 33949893

  • Oil and gas production and spontaneous preterm birth in the San Joaquin Valley, CA: A case-control study. Environmental epidemiology (Philadelphia, Pa.) Gonzalez, D. J., Sherris, A. R., Yang, W. n., Stevenson, D. K., Padula, A. M., Baiocchi, M. n., Burke, M. n., Cullen, M. R., Shaw, G. M. 2020; 4 (4): e099


    Recent studies report an association between preterm birth and exposure to unconventional oil and gas wells. There has been limited previous study on exposure to conventional wells, which are common in California. Our objective was to determine whether exposure to well sites was associated with increased odds of spontaneous preterm birth (delivery at <37 weeks).We conducted a case-control study using data on 27,913 preterm birth cases and 197,461 term birth controls. All births were without maternal comorbidities and were located in the San Joaquin Valley, CA, between 1998 and 2011. We obtained data for 83,559 wells in preproduction or production during the study period. We assessed exposure using inverse distance-squared weighting and, for each birth and trimester, we assigned an exposure tertile. Using logistic regression, we estimated adjusted odds ratios (ORs) for the association between exposure to well sites and preterm birth at 20-27, 28-31, and 32-36 weeks.We observed increased ORs for preterm birth with high exposure to wells in the first and second trimesters for births delivered at ≤31 weeks (adjusted ORs, 1.08-1.14). In stratified analyses, the associations were confined to births to Hispanic and non-Hispanic Black women and to women with ≤12 years of educational attainment. In a secondary analysis, we found evidence that exposure to wells in preproduction is associated with higher concentrations of particulate matter.We found evidence that exposure to oil and gas well sites is associated with increased risk of spontaneous preterm birth.

    View details for DOI 10.1097/EE9.0000000000000099

    View details for PubMedID 32832838

    View details for PubMedCentralID PMC7423522

  • Protecting groundwater quality from geogenic and emerging contaminants in actively managed aquifers Fakhreddine, S., Sherris, A., Lopez, A., Wells, A., Holmes, R., Nico, P., Babbitt, C., Fendorf, S. AMER CHEMICAL SOC. 2019