All Publications

  • Evaluation of a Pilot Anaerobic Secondary Effluent for Potable Reuse: Impact of Different Disinfection Schemes on Organic Fouling of RO Membranes and DBP Formation. Environmental science & technology Szczuka, A., Berglund-Brown, J. P., Chen, H. K., Quay, A. N., Mitch, W. A. 2019


    Anaerobic biological secondary treatment has the potential to substantially reduce the energy cost and footprint of wastewater treatment. However, for utilities seeking to meet future water demand through potable reuse, the compatibility of anaerobically treated secondary effluent with potable reuse trains has not been evaluated. This study characterized the effects of different combinations of chloramines, ozone, and biological activated carbon (BAC), applied as pretreatments to mitigate organic chemical fouling of reverse osmosis (RO) membranes, and the production of 43 disinfection byproducts (DBPs). The study employed effluent from a pilot-scale anaerobic reactor and soluble microbial products (SMPs) generated from a synthetic wastewater. Ozonation alone minimized RO flux decline by rendering the dissolved organic carbon (DOC) more hydrophilic. When combined with chloramination, ozone addition after chloramines maintained a higher RO flux. BAC treatment was ineffective for reducing the pressure and energy requirements for a set permeate flux. Regardless of pretreatment method prior to RO, the total DBP concentrations were <14 mug/L upstream of RO. After treatment by RO, the UV/hydrogen peroxide advanced oxidation process, and chloramination, the total DBP concentrations were ≤5 mug/L. When DBP concentrations were weighted by metrics of toxic potency, the total DBP calculated toxicity was 4-fold lower than observed previously in full-scale potable reuse facilities receiving aerobically treated secondary effluent. The RO fouling and DBP formation behavior of anaerobic SMPs were similar to that of the pilot-scale anaerobic effluent. The results of this study are promising, but more research is needed to evaluate whether anaerobic effluent is suitable as an influent to potable reuse trains.

    View details for PubMedID 30763514

  • Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds. Environmental science & technology McCurry, D. L., Quay, A. N., Mitch, W. A. 2016; 50 (3): 1209-1217


    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

    View details for DOI 10.1021/acs.est.5b04282

    View details for PubMedID 26752338