Academic Appointments

All Publications

  • Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Banta, A. B., Wei, J. H., Gill, C. C., Giner, J., Welander, P. V. 2017; 114 (2): 245-250


    Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.

    View details for DOI 10.1073/pnas.1617231114

    View details for Web of Science ID 000391439300033

    View details for PubMedID 28028245

    View details for PubMedCentralID PMC5240688

  • A distinct pathway for tetrahymanol synthesis in bacteria PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Banta, A. B., Wei, J. H., Welander, P. V. 2015; 112 (44): 13478-13483


    Tetrahymanol is a polycyclic triterpenoid lipid first discovered in the ciliate Tetrahymena pyriformis whose potential diagenetic product, gammacerane, is often used as a biomarker for water column stratification in ancient ecosystems. Bacteria are also a potential source of tetrahymanol, but neither the distribution of this lipid in extant bacteria nor the significance of bacterial tetrahymanol synthesis for interpreting gammacerane biosignatures is known. Here we couple comparative genomics with genetic and lipid analyses to link a protein of unknown function to tetrahymanol synthesis in bacteria. This tetrahymanol synthase (Ths) is found in a variety of bacterial genomes, including aerobic methanotrophs, nitrite-oxidizers, and sulfate-reducers, and in a subset of aquatic and terrestrial metagenomes. Thus, the potential to produce tetrahymanol is more widespread in the bacterial domain than previously thought. However, Ths is not encoded in any eukaryotic genomes, nor is it homologous to eukaryotic squalene-tetrahymanol cyclase, which catalyzes the cyclization of squalene directly to tetrahymanol. Rather, heterologous expression studies suggest that bacteria couple the cyclization of squalene to a hopene molecule by squalene-hopene cyclase with a subsequent Ths-dependent ring expansion to form tetrahymanol. Thus, bacteria and eukaryotes have evolved distinct biochemical mechanisms for producing tetrahymanol.

    View details for DOI 10.1073/pnas.1511482112

    View details for Web of Science ID 000364164900041

    View details for PubMedID 26483502

  • Spatial patterns of Aquificales in deep-sea vents along the Eastern Lau Spreading Center (SW Pacific). Systematic and applied microbiology Ferrera, I., Banta, A. B., Reysenbach, A. 2014; 37 (6): 442-448


    The microbial diversity associated with actively venting deep-sea hydrothermal deposits is tightly connected to the geochemistry of the hydrothermal fluids. Although the dominant members of these deposits drive the structure of the microbial communities, it is less well understood whether the lower abundance groups are as closely connected to the geochemical milieu, or driven perhaps by biotic factors such as microbial community interactions. We used the natural geochemical gradients that exist in the back-arc basin, Eastern Lau Spreading Center and Valu-Fa Ridge (ELSC/VFR) in the Southwestern Pacific, to explore whether the chemolithotrophic Aquificales are influenced by geographical location, host-rock of the vent field or deposit type. Using a combination of cloning, DNA fingerprinting (DGGE) and enrichment culturing approaches, all genera of this order previously described at marine vents were detected, i.e., Desulfurobacterium, Thermovibrio, Aquifex, Hydrogenivirga, Persephonella and Hydrogenothermus. The comparison between clone libraries and DGGE showed similar patterns of distribution of different Aquificales whereas results differed for the enrichment cultures that were retrieved. However, the use of cultivation-based and -independent methods did provide complementary phylogenetic diversity overview of the Aquificales in these systems. Together, this survey revealed that the ELSC/VFR contains some of the largest diversity of Aquificales ever reported at a deep-sea vent area, that the diversity patterns are tied to the geography and geochemistry of the system, and that this geochemical diverse back-arc basin may harbor new members of the Aquificales.

    View details for DOI 10.1016/j.syapm.2014.04.002

    View details for PubMedID 24862554

  • Structure of the RNA Polymerase Assembly Factor Crl and Identification of Its Interaction Surface with Sigma S JOURNAL OF BACTERIOLOGY Banta, A. B., Cuff, M. E., Lin, H., Myers, A. R., Ross, W., Joachimiak, A., Gourse, R. L. 2014; 196 (18): 3279-3288


    Bacteria utilize multiple sigma factors that associate with core RNA polymerase (RNAP) to control transcription in response to changes in environmental conditions. In Escherichia coli and Salmonella enterica, Crl positively regulates the σ(S) regulon by binding to σ(S) to promote its association with core RNAP. We recently characterized the determinants in σ(S) responsible for specific binding to Crl. However, little is known about the determinants in Crl required for this interaction. Here, we present the X-ray crystal structure of a Crl homolog from Proteus mirabilis in conjunction with in vivo and in vitro approaches that probe the Crl-σ(S) interaction in E. coli. We show that the P. mirabilis, Vibrio harveyi, and E. coli Crl homologs function similarly in E. coli, indicating that Crl structure and function are likely conserved throughout gammaproteobacteria. We utilize phylogenetic conservation and bacterial two-hybrid analyses to predict residues in Crl important for the interaction with σ(S). The results of p-benzoylphenylalanine (BPA)-mediated UV cross-linking studies further support the model in which an evolutionarily conserved central cleft is the surface on Crl that binds to σ(S). Within this conserved binding surface, we identify a key residue in Crl that is critical for activation of Eσ(S)-dependent transcription in vivo and in vitro. Our study provides a physical basis for understanding the σ(S)-Crl interaction.

    View details for DOI 10.1128/JB.01910-14

    View details for Web of Science ID 000341233500008

    View details for PubMedID 25002538

    View details for PubMedCentralID PMC4135691