Honors & Awards

  • Graduate Research Fellowship, NSF (2012)

Education & Certifications

  • B.S., University of Michigan - Ann Arbor, Evolutionary Anthropology and Mathematics (2012)

All Publications

  • Post-invasion demography of prehistoric humans in South America. Nature Goldberg, A., Mychajliw, A. M., Hadly, E. A. 2016; 532 (7598): 232-235


    As the last habitable continent colonized by humans, the site of multiple domestication hotspots, and the location of the largest Pleistocene megafaunal extinction, South America is central to human prehistory. Yet remarkably little is known about human population dynamics during colonization, subsequent expansions, and domestication. Here we reconstruct the spatiotemporal patterns of human population growth in South America using a newly aggregated database of 1,147 archaeological sites and 5,464 calibrated radiocarbon dates spanning fourteen thousand to two thousand years ago (ka). We demonstrate that, rather than a steady exponential expansion, the demographic history of South Americans is characterized by two distinct phases. First, humans spread rapidly throughout the continent, but remained at low population sizes for 8,000 years, including a 4,000-year period of 'boom-and-bust' oscillations with no net growth. Supplementation of hunting with domesticated crops and animals had a minimal impact on population carrying capacity. Only with widespread sedentism, beginning ~5‚ÄČka, did a second demographic phase begin, with evidence for exponential population growth in cultural hotspots, characteristic of the Neolithic transition worldwide. The unique extent of humanity's ability to modify its environment to markedly increase carrying capacity in South America is therefore an unexpectedly recent phenomenon.

    View details for DOI 10.1038/nature17176

    View details for PubMedID 27049941

  • Beyond 2/3 and 1/3: The Complex Signatures of Sex-Biased Admixture on the X Chromosome GENETICS Goldberg, A., Rosenberg, N. A. 2015; 201 (1): 263-279


    Sex-biased demography, in which parameters governing migration and population size differ between females and males, has been studied through comparisons of X chromosomes, which are inherited sex-specifically, and autosomes, which are not. A common form of sex bias in humans is sex-biased admixture, in which at least one of the source populations differs in its proportions of females and males contributing to an admixed population. Studies of sex-biased admixture often examine the mean ancestry for markers on the X chromosome in relation to the autosomes. A simple framework noting that in a population with equally many females and males, two-thirds of X chromosomes appear in females, suggests that the mean X-chromosomal admixture fraction is a linear combination of female and male admixture parameters, with coefficients 2/3 and 1/3, respectively. Extending a mechanistic admixture model to accommodate the X chromosome, we demonstrate that this prediction is not generally true in admixture models, although it holds in the limit for an admixture process occurring as a single event. For a model with constant ongoing admixture, we determine the mean X-chromosomal admixture, comparing admixture on female and male X chromosomes to corresponding autosomal values. Surprisingly, in reanalyzing African-American genetic data to estimate sex-specific contributions from African and European sources, we find that the range of contributions compatible with the excess African ancestry on the X chromosome compared to autosomes has a wide spread, permitting scenarios either without male-biased contributions from Europe or without female-biased contributions from Africa.

    View details for DOI 10.1534/genetics.115.178509

    View details for Web of Science ID 000361206400020

  • Autosomal Admixture Levels Are Informative About Sex Bias in Admixed Populations GENETICS Goldberg, A., Verdu, P., Rosenberg, N. A. 2014; 198 (3): 1209-1229