All Publications

  • expansion carriers. NeuroImage. Clinical Lee, S. E., Sias, A. C., Mandelli, M. L., Brown, J. A., Brown, A. B., Khazenzon, A. M., Vidovszky, A. A., Zanto, T. P., Karydas, A. M., Pribadi, M., Dokuru, D., Coppola, G., Geschwind, D. H., Rademakers, R., Gorno-Tempini, M. L., Rosen, H. J., Miller, B. L., Seeley, W. W. 2017; 14: 286-297


    Hexanucleotide repeat expansions in C9ORF72 are the most common known genetic cause of familial and sporadic frontotemporal dementia and amyotrophic lateral sclerosis. Previous work has shown that patients with behavioral variant frontotemporal dementia due to C9ORF72 show salience and sensorimotor network disruptions comparable to those seen in sporadic behavioral variant frontotemporal dementia, but it remains unknown how early in the lifespan these and other changes in brain structure and function arise. To gain insights into this question, we compared 15 presymptomatic carriers (age 43.7 ± 10.2 years, nine females) to matched healthy controls. We used voxel-based morphometry to assess gray matter, diffusion tensor imaging to interrogate white matter tracts, and task-free functional MRI to probe the salience, sensorimotor, default mode, and medial pulvinar thalamus-seeded networks. We further used a retrospective chart review to ascertain psychiatric histories in carriers and their non-carrier family members. Carriers showed normal cognition and behavior despite gray matter volume and brain connectivity deficits that were apparent as early as the fourth decade of life. Gray matter volume deficits were topographically similar though less severe than those in patients with behavioral variant frontotemporal dementia due to C9ORF72, with major foci in cingulate, insula, thalamus, and striatum. Reduced white matter integrity was found in the corpus callosum, cingulum bundles, corticospinal tracts, uncinate fasciculi and inferior longitudinal fasciculi. Intrinsic connectivity deficits were detected in all four networks but most prominent in salience and medial pulvinar thalamus-seeded networks. Carrier and control groups showed comparable relationships between imaging metrics and age, suggesting that deficits emerge during early adulthood. Carriers and non-carrier family members had comparable lifetime histories of psychiatric symptoms. Taken together, the findings suggest that presymptomatic C9ORF72 expansion carriers exhibit functionally compensated brain volume and connectivity deficits that are similar, though less severe, to those reported during the symptomatic phase. The early adulthood emergence of these deficits suggests that they represent aberrant network patterning during development, an early neurodegeneration prodrome, or both.

    View details for DOI 10.1016/j.nicl.2016.12.006

    View details for PubMedID 28337409

  • Early-onset Alzheimer's disease versus frontotemporal dementia: resolution with genetic diagnoses? Neurocase Sha, S. J., Khazenzon, A. M., Ghosh, P. M., Rankin, K. P., Pribadi, M., Coppola, G., Geschwind, D. H., Rabinovici, G. D., Miller, B. L., Lee, S. E. 2016; 22 (2): 161-167


    We report a diagnostically challenging case of a 64-year-old man with a history of remote head trauma who developed mild behavioral changes and dyscalculia. He was diagnosed with clinical Alzheimer's disease (AD), with additional features consistent with behavioral variant frontotemporal dementia. Structural magnetic resonance imaging revealed atrophy in bilateral frontal and parietal cortices and hippocampi on visual inspection and left frontal pole and bilateral anterior temporal encephalomalacia, suspected to be due to head trauma. Consistent with the diagnosis of Alzheimer's pathology, positron emission tomography (PET) with Pittsburgh compound B suggested the presence of beta-amyloid. Fluorodeoxyglucose PET demonstrated hypometabolism in bilateral frontal and temporoparietal cortices. Voxel-based morphometry showed atrophy predominant in ventral frontal regions (bilateral orbitofrontal cortex, pregenual anterior cingulate/medial superior frontal gyrus), bilateral mid cingulate, bilateral lateral temporal cortex, and posterior insula. Bilateral caudate, thalamus, hippocampi, and cerebellum were prominently atrophied. Unexpectedly, a pathologic hexanucleotide repeat expansion in C9ORF72 was identified in this patient. This report underscores the clinical variability in C9ORF72 expansion carriers and the need to consider mixed pathologies, particularly when imaging studies are inconsistent with a single syndrome or pathology.

    View details for DOI 10.1080/13554794.2015.1080283

    View details for PubMedID 26304661

  • Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion BRAIN Lee, S. E., Khazenzon, A. M., Trujillo, A. J., Guo, C. C., Yokoyama, J. S., Sha, S. J., Takada, L. T., Karydas, A. M., Block, N. R., Coppola, G., Pribadi, M., Geschwind, D. H., Rademakers, R., Fong, J. C., Weiner, M. W., Boxer, A. L., Kramer, J. H., Rosen, H. J., Miller, B. L., Seeley, W. W. 2014; 137: 3047-3060


    Hexanucleotide repeat expansion in C9orf72 represents the most common genetic cause of familial and sporadic behavioural variant frontotemporal dementia. Previous studies show that some C9orf72 carriers with behavioural variant frontotemporal dementia exhibit distinctive atrophy patterns whereas others show mild or undetectable atrophy despite severe behavioural impairment. To explore this observation, we examined intrinsic connectivity network integrity in patients with or without the C9orf72 expansion. We studied 28 patients with behavioural variant frontotemporal dementia, including 14 C9orf72 mutation carriers (age 58.3 ± 7.7 years, four females) and 14 non-carriers (age 60.8 ± 6.9 years, four females), and 14 age- and sex-matched healthy controls. Both patient groups included five patients with comorbid motor neuron disease. Neuropsychological data, structural brain magnetic resonance imaging, and task-free functional magnetic resonance imaging were obtained. Voxel-based morphometry delineated atrophy patterns, and seed-based intrinsic connectivity analyses enabled group comparisons of the salience, sensorimotor, and default mode networks. Single-patient analyses were used to explore network imaging as a potential biomarker. Despite contrasting atrophy patterns in C9orf72 carriers versus non-carriers, patient groups showed topographically similar connectivity reductions in the salience and sensorimotor networks. Patients without C9orf72 expansions exhibited increases in default mode network connectivity compared to controls and mutation carriers. Across all patients, behavioural symptom severity correlated with diminished salience network connectivity and heightened default mode network connectivity. In C9orf72 carriers, salience network connectivity reduction correlated with atrophy in the left medial pulvinar thalamic nucleus, and this region further showed diminished connectivity with key salience network hubs. Single-patient analyses revealed salience network disruption and default mode network connectivity enhancement in C9orf72 carriers with early-stage or slowly progressive symptoms. The findings suggest that patients with behavioural variant frontotemporal dementia with or without the C9orf72 expansion show convergent large-scale network breakdowns despite distinctive atrophy patterns. Medial pulvinar degeneration may contribute to the behavioural variant frontotemporal dementia syndrome in C9orf72 carriers by disrupting salience network connectivity. Task-free functional magnetic resonance imaging shows promise in detecting early-stage disease in C9orf72 carriers and may provide a unifying biomarker across diverse anatomical variants.

    View details for DOI 10.1093/brain/awu248

    View details for Web of Science ID 000346760900026

    View details for PubMedID 25273996