Bio


During my doctoral studies, I worked on the development of micro-scale platforms for investigations of biological structures, encompassing microfluidic devices and patterned surfaces. My current project at Stanford focuses on studying the adaptive resizing of the Drosophila midgut, using novel microsystems.

Professional Education


  • Doctor of Philosophy, Chalmers University of Technology (2016)

Stanford Advisors


Current Research and Scholarly Interests


The small intestine has the remarkable ability to adapt its size to the availability of resources. It can grow dramatically in size to increase its digestive capacity when food is abundant and shrink to conserve energy when food is scarce. Stem cells play an important role in at least some of the mechanisms which modulate this reversible remodelling of adult organs.

We aim to understand how the stem cells can sense the different levels of functional demand. To address this question, we will exploit the genetic toolbox of the Drosophila and establish a reductionist model of its midgut. We will also develop new micro-scale devices to delivering forces and chemical stimuli. Using this interdisciplinary approach, we will study the interplay between the physical forces in the intestine and the nutrients in the adaptive resizing of the Drosophila midgut.

The project is funded by the Stanford Bio-X Interdisciplinary Initiatives Program.

Lab Affiliations


All Publications


  • Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap. Lab on a chip Nekimken, A. L., Fehlauer, H., Kim, A. A., Manosalvas-Kjono, S. N., Ladpli, P., Memon, F., Gopisetty, D., Sanchez, V., Goodman, M. B., Pruitt, B. L., Krieg, M. 2017

    Abstract

    New tools for applying force to animals, tissues, and cells are critically needed in order to advance the field of mechanobiology, as few existing tools enable simultaneous imaging of tissue and cell deformation as well as cellular activity in live animals. Here, we introduce a novel microfluidic device that enables high-resolution optical imaging of cellular deformations and activity while applying precise mechanical stimuli to the surface of the worm's cuticle with a pneumatic pressure reservoir. To evaluate device performance, we compared analytical and numerical simulations conducted during the design process to empirical measurements made with fabricated devices. Leveraging the well-characterized touch receptor neurons (TRNs) with an optogenetic calcium indicator as a model mechanoreceptor neuron, we established that individual neurons can be stimulated and that the device can effectively deliver steps as well as more complex stimulus patterns. This microfluidic device is therefore a valuable platform for investigating the mechanobiology of living animals and their mechanosensitive neurons.

    View details for DOI 10.1039/c6lc01165a

    View details for PubMedID 28207921

    View details for PubMedCentralID PMC5360562