All Publications

  • ENPP1's regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling. Proceedings of the National Academy of Sciences of the United States of America Carozza, J. A., Cordova, A. F., Brown, J. A., AlSaif, Y., Bohnert, V., Cao, X., Mardjuki, R. E., Skariah, G., Fernandez, D., Li, L. 2022; 119 (21): e2119189119


    SignificanceThe immune system strikes a careful balance between launching a robust response to threats and avoiding overactivation. The molecule cGAMP is an immunotransmitter that activates innate immunity and signals extracellularly, where it is subject to degradation by the enzyme ENPP1. Here, we engineer ENPP1 to lose activity toward cGAMP but not other substrates, thus creating a biochemically precise tool to understand how ENPP1 regulates extracellular cGAMP and thus innate immunity. We uncover that ENPP1's degradation of extracellular cGAMP has a long evolutionary history, and that this mechanism is critical for controlling diverse immune threats, including viral infection and inflammation.

    View details for DOI 10.1073/pnas.2119189119

    View details for PubMedID 35588451

  • Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act CHEMICAL REVIEWS Cao, X., Cordova, A. F., Li, L. 2022; 122 (3): 3414-3458


    The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.

    View details for DOI 10.1021/acs.chemrev.1c00716

    View details for Web of Science ID 000767145700008

    View details for PubMedID 34870969

  • Human SLC46A2 Is the Dominant cGAMP Importer in Extracellular cGAMP-Sensing Macrophages and Monocytes. ACS central science Cordova, A. F., Ritchie, C., Bohnert, V., Li, L. 2021; 7 (6): 1073-1088


    Administration of exogenous CDNs to activate the cGAMP-STING pathway is a promising therapeutic strategy to unleash the full potential of cancer immunotherapy. This strategy mirrors the role of endogenous extracellular cGAMP, an immunotransmitter that is transferred from cancer cells to cGAMP-sensing cells in the host, promoting immunity. However, the CDN import mechanisms used by host cells within tumors remain unknown. Here we identified the protein SLC46A2 as the dominant cGAMP importer in primary human monocytes. Furthermore, we discovered that monocytes and M1-polarized macrophages directly sense tumor-derived extracellular cGAMP in murine tumors. Finally, we demonstrated that SLC46A2 is the dominant cGAMP importer in monocyte-derived macrophages. Together, we provide the first cellular and molecular mechanisms of cGAMP as an immunotransmitter, paving the way for effective STING pathway therapeutics.

    View details for DOI 10.1021/acscentsci.1c00440

    View details for PubMedID 34235268

  • SLC19A1 Is an Importer of the Immunotransmitter cGAMP. Molecular cell Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C., Li, L. 2019


    2'3'-cyclic-GMP-AMP (cGAMP) is a second messenger that activates the antiviral stimulator of interferon genes (STING) pathway. We recently identified a novel role for cGAMP as a soluble, extracellular immunotransmitter that is produced and secreted by cancer cells. Secreted cGAMP is then sensed by host cells, eliciting an antitumoral immune response. Due to the antitumoral effects of cGAMP, other CDN-based STING agonists are currently under investigation in clinical trials for metastatic solid tumors. However, it is unknown how cGAMP and other CDNs cross the cell membrane to activateintracellular STING. Using a genome-wide CRISPRscreen, we identified SLC19A1 as the first knownimporter of cGAMP and other CDNs, including theinvestigational new drug 2'3'-bisphosphosphothioate-cyclic-di-AMP (2'3'-CDAS). These discoveries will provide insight into cGAMP's role as an immunotransmitter and aid in the development of more targeted CDN-based cancer therapeutics.

    View details for DOI 10.1016/j.molcel.2019.05.006

    View details for PubMedID 31126740