Honors & Awards


  • K99/R00 Career Award, NIH-NIDCD (2013)
  • F32 NRSA Fellowship, NIH-NIDCD (2010)
  • F31 NRSA Fellowship, NIH-NIDCD (2007)

Professional Education


  • Doctor of Philosophy, Massachusetts Institute of Technology (2009)
  • BS, Cornell University, Electrical Engineering (2003)

Stanford Advisors


Current Research and Scholarly Interests


Mechanotransduction mechanisms in mammalian hair cells

Journal Articles


  • Adaptation of Mammalian auditory hair cell mechanotransduction is independent of calcium entry. Neuron Peng, A. W., Effertz, T., Ricci, A. J. 2013; 80 (4): 960-972

    Abstract

    Adaptation is a hallmark of hair cell mechanotransduction, extending the sensory hair bundle dynamic range while providing mechanical filtering of incoming sound. In hair cells responsive to low frequencies, two distinct adaptation mechanisms exist, a fast component of debatable origin and a slow myosin-based component. It is generally believed that Ca(2+) entry through mechano-electric transducer channels is required for both forms of adaptation. This study investigates the calcium dependence of adaptation in the mammalian auditory system. Recordings from rat cochlear hair cells demonstrate that altering Ca(2+) entry or internal Ca(2+) buffering has little effect on either adaptation kinetics or steady-state adaptation responses. Two additional findings include a voltage-dependent process and an extracellular Ca(2+) binding site, both modulating the resting open probability independent of adaptation. These data suggest that slow motor adaptation is negligible in mammalian auditory cells and that the remaining adaptation process is independent of calcium entry.

    View details for DOI 10.1016/j.neuron.2013.08.025

    View details for PubMedID 24267652

  • Faster than the Speed of Hearing: Nanomechanical Force Probes Enable the Electromechanical Observation of Cochlear Hair Cells NANO LETTERS Doll, J. C., Peng, A. W., Ricci, A. J., Pruitt, B. L. 2012; 12 (12): 6107-6111

    Abstract

    Understanding the mechanisms responsible for our sense of hearing requires new tools for unprecedented stimulation and monitoring of sensory cell mechanotransduction at frequencies yet to be explored. We describe nanomechanical force probes designed to evoke mechanotransduction currents at up to 100 kHz in living cells. High-speed force and displacement metrology is enabled by integrating piezoresistive sensors and piezoelectric actuators onto nanoscale cantilevers. The design, fabrication process, actuator performance, and actuator-sensor crosstalk compensation results are presented. We demonstrate the measurement of mammalian cochlear hair cell mechanotransduction with simultaneous patch clamp recordings at unprecedented speeds. The probes can deliver mechanical stimuli with sub-10 ?s rise times in water and are compatible with standard upright and inverted microscopes.

    View details for DOI 10.1021/nl3036349

    View details for Web of Science ID 000312122100012

    View details for PubMedID 23181721

  • Swept Field Laser Confocal Microscopy for Enhanced Spatial and Temporal Resolution in Live-Cell Imaging MICROSCOPY AND MICROANALYSIS Castellano-Munoz, M., Peng, A. W., Salles, F. T., Ricci, A. J. 2012; 18 (4): 753-760

    Abstract

    Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality.

    View details for DOI 10.1017/S1431927612000542

    View details for Web of Science ID 000307171900016

    View details for PubMedID 22831554

  • Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction NATURE COMMUNICATIONS Peng, A. W., Salles, F. T., Pan, B., Ricci, A. J. 2011; 2

    Abstract

    Mechanosensation is a primitive and somewhat ubiquitous sense. At the inner ear, sensory hair cells are refined to enhance sensitivity, dynamic range and frequency selectivity. Thirty years ago, mechanisms of mechanotransduction and adaptation were well accounted for by simple mechanical models that incorporated physiological and morphological properties of hair cells. Molecular and genetic tools, coupled with new optical techniques, are now identifying and localizing specific components of the mechanotransduction machinery. These new findings challenge long-standing theories, and require modification of old and development of new models. Future advances require the integration of molecular and physiological data to causally test these new hypotheses.

    View details for DOI 10.1038/ncomms1533

    View details for Web of Science ID 000297686500010

    View details for PubMedID 22045002

  • Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification? HEARING RESEARCH Peng, A. W., Ricci, A. J. 2011; 273 (1-2): 109-122

    Abstract

    Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process.

    View details for DOI 10.1016/j.heares.2010.03.094

    View details for Web of Science ID 000289608100013

    View details for PubMedID 20430075

  • New Devices for Investigating Hair Cell Mechanical Properties WHAT FIRE IS IN MINE EARS: PROGRESS IN AUDITORY BIOMECHANICS Doll, J. C., Peng, A., Ricci, A., Pruitt, B. L. 2011; 1403

    View details for DOI 10.1063/1.3658054

    View details for Web of Science ID 000301945200003

  • Mechanosensitive Hair Cell-like Cells from Embryonic and Induced Pluripotent Stem Cells CELL Oshima, K., Shin, K., Diensthuber, M., Peng, A. W., Ricci, A. J., Heller, S. 2010; 141 (4): 704-716

    Abstract

    Mechanosensitive sensory hair cells are the linchpin of our senses of hearing and balance. The inability of the mammalian inner ear to regenerate lost hair cells is the major reason for the permanence of hearing loss and certain balance disorders. Here, we present a stepwise guidance protocol starting with mouse embryonic stem and induced pluripotent stem cells, which were directed toward becoming ectoderm capable of responding to otic-inducing growth factors. The resulting otic progenitor cells were subjected to varying differentiation conditions, one of which promoted the organization of the cells into epithelial clusters displaying hair cell-like cells with stereociliary bundles. Bundle-bearing cells in these clusters responded to mechanical stimulation with currents that were reminiscent of immature hair cell transduction currents.

    View details for DOI 10.1016/j.cell.2010.03.035

    View details for Web of Science ID 000277623600022

    View details for PubMedID 20478259

  • Twinfilin 2 Regulates Actin Filament Lengths in Cochlear Stereocilia JOURNAL OF NEUROSCIENCE Peng, A. W., Belyantseva, I. A., Hsu, P. D., Friedman, T. B., Heller, S. 2009; 29 (48): 15083-15088

    Abstract

    Inner ear sensory hair cells convert mechanical stimuli into electrical signals. This conversion happens in the exquisitely mechanosensitive hair bundle that protrudes from the cell's apical surface. In mammals, cochlear hair bundles are composed of 50-100 actin-filled stereocilia, which are organized in three rows in a staircase manner. Stereocilia actin filaments are uniformly oriented with their barbed ends toward stereocilia tips. During development, the actin core of each stereocilium undergoes elongation due to addition of actin monomers to the barbed ends of the filaments. Here we show that in the mouse cochlea the barbed end capping protein twinfilin 2 is present at the tips of middle and short rows of stereocilia from postnatal day 5 (P5) onward, which correlates with a time period when these rows stop growing. The tall stereocilia rows, which do not display twinfilin 2 at their tips, continue to elongate between P5 and P15. When we expressed twinfilin 2 in LLC/PK1-CL4 (CL4) cells, we observed a reduction of espin-induced microvilli length, pointing to a potent function of twinfilin 2 in suppressing the elongation of actin filaments. Overexpression of twinfilin 2 in cochlear inner hair cells resulted in a significant reduction of stereocilia length. Our results suggest that twinfilin 2 plays a role in the regulation of stereocilia elongation by restricting excessive elongation of the shorter row stereocilia thereby maintaining the mature staircase architecture of cochlear hair bundles.

    View details for DOI 10.1523/JNEUROSCI.2782-09.2009

    View details for Web of Science ID 000272361700007

    View details for PubMedID 19955359

  • MAGI-1, A Candidate Stereociliary Scaffolding Protein, Associates with the Tip-Link Component Cadherin 23 JOURNAL OF NEUROSCIENCE Xu, Z., Peng, A. W., Oshima, K., Heller, S. 2008; 28 (44): 11269-11276

    Abstract

    Inner ear hair-cell mechanoelectrical transduction is mediated by a largely unidentified multiprotein complex associated with the stereociliary tips of hair bundles. One identified component of tip links, which are the extracellular filamentous connectors implicated in gating the mechanoelectrical transduction channels, is the transmembrane protein cadherin 23 (Cdh23), more specifically, the hair- cell-specific Cdh23(+68) splice variant. Using the intracellular domain of Cdh23(+68) as bait, we identified in a cochlear cDNA library MAGI-1, a MAGUK (membrane-associated guanylate kinase) protein. MAGI-1 binds via its PDZ4 domain to a C-terminal PDZ-binding site on Cdh23. MAGI-1 immunoreactivity was detectable throughout neonatal stereocilia in a distribution similar to that of Cdh23. As development proceeded, MAGI-1 occurred in a punctate staining pattern on stereocilia, which was maintained into adulthood. Previous reports suggest that Cdh23 interacts via an internal PDZ-binding site with the PDZ1 domain of the stereociliary protein harmonin, and potentially via a weaker binding of its C terminus with harmonin's PDZ2 domain. We propose that MAGI-1 has the ability to replace harmonin's PDZ2 binding at Cdh23's C terminus. Moreover, the strong interaction between PDZ1 of harmonin and Cdh23 is interrupted by a 35 aa insertion in the hair-cell-specific Cdh23(+68) splice variant, which puts forward MAGI-1 as an attractive candidate for an intracellular scaffolding partner of this tip-link protein. Our results consequently support a role of MAGI-1 in the tip-link complex, where it could provide a sturdy connection with the cytoskeleton and with other components of the mechanoelectrical transduction complex.

    View details for DOI 10.1523/JNEUROSCI.3833-08.2008

    View details for Web of Science ID 000260502400018

    View details for PubMedID 18971469