Professional Education

  • Doctor of Philosophy, Cornell University (2015)
  • Master of Science, Cornell University (2014)
  • Bachelor of Science, Cornell University (2008)

Stanford Advisors

All Publications

  • Absorptive pinhole collimators for ballistic Dirac fermions in graphene NATURE COMMUNICATIONS Barnard, A. W., Hughes, A., Sharpe, A. L., Watanabe, K., Taniguchi, T., Goldhaber-Gordon, D. 2017; 8


    Ballistic electrons in solids can have mean free paths far larger than the smallest features patterned by lithography. This has allowed development and study of solid-state electron-optical devices such as beam splitters and quantum point contacts, which have informed our understanding of electron flow and interactions. Recently, high-mobility graphene has emerged as an ideal two-dimensional semimetal that hosts unique chiral electron-optical effects due to its honeycomb crystalline lattice. However, this chiral transport prevents the simple use of electrostatic gates to define electron-optical devices in graphene. Here we present a method of creating highly collimated electron beams in graphene based on collinear pairs of slits, with absorptive sidewalls between the slits. By this method, we achieve beams with angular width 18° or narrower, and transmission matching classical ballistic predictions.

    View details for DOI 10.1038/ncomms15418

    View details for Web of Science ID 000401279800001

    View details for PubMedID 28504264