All Publications

  • Tuning the Geometric and Electronic Structure of Synthetic High-Valent Heme Iron(IV)-Oxo Models in the Presence of a Lewis Acid and Various Axial Ligands. Journal of the American Chemical Society Ehudin, M. A., Gee, L. B., Sabuncu, S., Braun, A., Moënne-Loccoz, P., Hedman, B., Hodgson, K. O., Solomon, E. I., Karlin, K. D. 2019; 141 (14): 5942–60


    High-valent ferryl species (e.g., (Por)FeIV═O, Cmpd-II) are observed or proposed key oxidizing intermediates in the catalytic cycles of heme-containing enzymes (P-450s, peroxidases, catalases, and cytochrome c oxidase) involved in biological respiration and oxidative metabolism. Herein, various axially ligated iron(IV)-oxo complexes were prepared to examine the influence of the identity of the base. These were generated by addition of various axial ligands (1,5-dicyclohexylimidazole (DCHIm), a tethered-imidazole system, and sodium derivatives of 3,5-dimethoxyphenolate and imidazolate). Characterization was carried out via UV-vis, electron paramagnetic resonance (EPR), 57Fe Mössbauer, Fe X-ray absorption (XAS), and 54/57Fe resonance Raman (rR) spectroscopies to confirm their formation and compare the axial ligand perturbation on the electronic and geometric structures of these heme iron(IV)-oxo species. Mössbauer studies confirmed that the axially ligated derivatives were iron(IV) and six-coordinate complexes. XAS and 54/57Fe rR data correlated with slight elongation of the iron-oxo bond with increasing donation from the axial ligands. The first reported synthetic H-bonded iron(IV)-oxo heme systems were made in the presence of the protic Lewis acid, 2,6-lutidinium triflate (LutH+), with (or without) DCHIm. Mössbauer, rR, and XAS spectroscopic data indicated the formation of molecular Lewis acid ferryl adducts (rather than full protonation). The reduction potentials of these novel Lewis acid adducts were bracketed through addition of outer-sphere reductants. The oxidizing capabilities of the ferryl species with or without Lewis acid vary drastically; addition of LutH+ to F8Cmpd-II (F8 = tetrakis(2,6-difluorophenyl)porphyrinate) increased its reduction potential by more than 890 mV, experimentally confirming that H-bonding interactions can increase the reactivity of ferryl species.

    View details for PubMedID 30860832

  • Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Proceedings of the National Academy of Sciences of the United States of America Snyder, B. E., Bols, M. L., Rhoda, H. M., Vanelderen, P., Bottger, L. H., Braun, A., Yan, J. J., Hadt, R. G., Babicz, J. T., Hu, M. Y., Zhao, J., Alp, E. E., Hedman, B., Hodgson, K. O., Schoonheydt, R. A., Sels, B. F., Solomon, E. I. 2018


    A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named alpha-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of alpha-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.

    View details for PubMedID 30429333