Stanford Advisors

Lab Affiliations

All Publications

  • Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. eLife Gancz, D., Raftrey, B. C., Perlmoter, G., Marín-Juez, R., Semo, J., Matsuoka, R. L., Karra, R., Raviv, H., Moshe, N., Addadi, Y., Golani, O., Poss, K. D., Red-Horse, K., Stainier, D. Y., Yaniv, K. 2019; 8


    In recent years there has been increasing interest in the role of lymphatics in organ repair and regeneration, due to their importance in immune surveillance and fluid homeostasis. Experimental approaches aimed at boosting lymphangiogenesis following myocardial infarction in mice, were shown to promote healing of the heart. Yet, the mechanisms governing cardiac lymphatic growth remain unclear. Here we identify two distinct lymphatic populations in the hearts of zebrafish and mouse, one that forms through sprouting lymphangiogenesis, and the other by coalescence of isolated lymphatic cells. By tracing the development of each subset, we reveal diverse cellular origins and differential response to signaling cues. Finally, we show that lymphatic vessels are required for cardiac regeneration in zebrafish as mutants lacking lymphatics display severely impaired regeneration capabilities. Overall, our results provide novel insight into the mechanisms underlying lymphatic formation during development and regeneration, opening new avenues for interventions targeting specific lymphatic populations.

    View details for DOI 10.7554/eLife.44153

    View details for PubMedID 31702554

  • Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers. PLoS biology Sallee, M. D., Zonka, J. C., Skokan, T. D., Raftrey, B. C., Feldman, J. L. 2018; 16 (8): e2005189


    Non-centrosomal microtubule organizing centers (ncMTOCs) are found in most differentiated cells, but how these structures regulate microtubule organization and dynamics is largely unknown. We optimized a tissue-specific degradation system to test the role of the essential centrosomal microtubule nucleators gamma-tubulin ring complex (gamma-TuRC) and AIR-1/Aurora A at the apical ncMTOC, where they both localize in Caenorhabditis elegans embryonic intestinal epithelial cells. As at the centrosome, the core gamma-TuRC component GIP-1/GCP3 is required to recruit other gamma-TuRC components to the apical ncMTOC, including MZT-1/MZT1, characterized here for the first time in animal development. In contrast, AIR-1 and MZT-1 were specifically required to recruit gamma-TuRC to the centrosome, but not to centrioles or to the apical ncMTOC. Surprisingly, microtubules remain robustly organized at the apical ncMTOC upon gamma-TuRC and AIR-1 co-depletion, and upon depletion of other known microtubule regulators, including TPXL-1/TPX2, ZYG-9/ch-TOG, PTRN-1/CAMSAP, and NOCA-1/Ninein. However, loss of GIP-1 removed a subset of dynamic EBP-2/EB1-marked microtubules, and the remaining dynamic microtubules grew faster. Together, these results suggest that different microtubule organizing centers (MTOCs) use discrete proteins for their function, and that the apical ncMTOC is composed of distinct populations of gamma-TuRC-dependent and -independent microtubules that compete for a limited pool of resources.

    View details for PubMedID 30080857

  • Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers PLOS BIOLOGY Sallee, M. D., Zonka, J. C., Skokan, T. D., Raftrey, B. C., Feldman, J. L. 2018; 16 (8)
  • Single-cell analysis of early progenitor cells that build coronary arteries NATURE Su, T., Stanley, G., Sinha, R., D'Amato, G., Das, S., Rhee, S., Chang, A. H., Poduri, A., Raftrey, B., Thanh Theresa Dinh, Roper, W. A., Li, G., Quinn, K. E., Caron, K. M., Wu, S., Miquerol, L., Butcher, E. C., Weissman, I., Quake, S., Red-Horse, K. 2018; 559 (7714): 356-+
  • Single-cell analysis of early progenitor cells that build coronary arteries. Nature Su, T., Stanley, G., Sinha, R., D'Amato, G., Das, S., Rhee, S., Chang, A. H., Poduri, A., Raftrey, B., Dinh, T. T., Roper, W. A., Li, G., Quinn, K. E., Caron, K. M., Wu, S., Miquerol, L., Butcher, E. C., Weissman, I., Quake, S., Red-Horse, K. 2018


    Arteries and veins are specified by antagonistic transcriptional programs. However, during development and regeneration, new arteries can arise from pre-existing veins through a poorly understood process of cell fate conversion. Here, using single-cell RNA sequencing and mouse genetics, we show that vein cells of the developing heart undergo an early cell fate switch to create a pre-artery population that subsequently builds coronary arteries. Vein cells underwent a gradual and simultaneous switch from venous to arterial fate before a subset of cells crossed a transcriptional threshold into the pre-artery state. Before the onset of coronary blood flow, pre-artery cells appeared in the immature vessel plexus, expressed mature artery markers, and decreased cell cycling. The vein-specifying transcription factor COUP-TF2 (also known as NR2F2) prevented plexus cells from overcoming the pre-artery threshold by inducing cell cycle genes. Thus, vein-derived coronary arteries are built by pre-artery cells that can differentiate independently of blood flow upon the release of inhibition mediated by COUP-TF2 and cell cycle factors.

    View details for PubMedID 29973725

  • DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis GENES & DEVELOPMENT Chang, A. H., Raftrey, B. C., D'Amato, G., Surya, V. N., Poduri, A., Chen, H. I., Goldstone, A. B., Woo, J., Fuller, G. G., Dunn, A. R., Red-Horse, K. 2017; 31 (13): 1308–24


    Sufficient blood flow to tissues relies on arterial blood vessels, but the mechanisms regulating their development are poorly understood. Many arteries, including coronary arteries of the heart, form through remodeling of an immature vascular plexus in a process triggered and shaped by blood flow. However, little is known about how cues from fluid shear stress are translated into responses that pattern artery development. Here, we show that mice lacking endothelial Dach1 had small coronary arteries, decreased endothelial cell polarization, and reduced expression of the chemokine Cxcl12 Under shear stress in culture, Dach1 overexpression stimulated endothelial cell polarization and migration against flow, which was reversed upon CXCL12/CXCR4 inhibition. In vivo, DACH1 was expressed during early arteriogenesis but was down in mature arteries. Mature artery-type shear stress (high, uniform laminar) specifically down-regulated DACH1, while the remodeling artery-type flow (low, variable) maintained DACH1 expression. Together, our data support a model in which DACH1 stimulates coronary artery growth by activating Cxcl12 expression and endothelial cell migration against blood flow into developing arteries. This activity is suppressed once arteries reach a mature morphology and acquire high, laminar flow that down-regulates DACH1. Thus, we identified a mechanism by which blood flow quality balances artery growth and maturation.

    View details for PubMedID 28779009

  • Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development (Cambridge, England) Poduri, A., Chang, A. H., Raftrey, B., Rhee, S., Van, M., Red-Horse, K. 2017; 144 (18): 3241–52


    How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4-deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size.

    View details for PubMedID 28760815

  • VEGF-C and aortic cardiomyocytes guide coronary artery stem development JOURNAL OF CLINICAL INVESTIGATION Chen, H. I., Poduri, A., Numi, H., Kivela, R., Saharinen, P., McKay, A. S., Raftrey, B., Churko, J., Tian, X., Zhou, B., Wu, J. C., Alitalo, K., Red-Horse, K. 2014; 124 (11): 4899-4914


    Coronary arteries (CAs) stem from the aorta at 2 highly stereotyped locations, deviations from which can cause myocardial ischemia and death. CA stems form during embryogenesis when peritruncal blood vessels encircle the cardiac outflow tract and invade the aorta, but the underlying patterning mechanisms are poorly understood. Here, using murine models, we demonstrated that VEGF-C-deficient hearts have severely hypoplastic peritruncal vessels, resulting in delayed and abnormally positioned CA stems. We observed that VEGF-C is widely expressed in the outflow tract, while cardiomyocytes develop specifically within the aorta at stem sites where they surround maturing CAs in both mouse and human hearts. Mice heterozygous for islet 1 (Isl1) exhibited decreased aortic cardiomyocytes and abnormally low CA stems. In hearts with outflow tract rotation defects, misplaced stems were associated with shifted aortic cardiomyocytes, and myocardium induced ectopic connections with the pulmonary artery in culture. These data support a model in which CA stem development first requires VEGF-C to stimulate vessel growth around the outflow tract. Then, aortic cardiomyocytes facilitate interactions between peritruncal vessels and the aorta. Derangement of either step can lead to mispatterned CA stems. Studying this niche for cardiomyocyte development, and its relationship with CAs, has the potential to identify methods for stimulating vascular regrowth as a treatment for cardiovascular disease.

    View details for DOI 10.1172/JCI77483

    View details for Web of Science ID 000344203300026