Bio-X


Showing 71-80 of 93 Results

  • Stephen Boyd

    Stephen Boyd

    Samsung Professor in the School of Engineering

    BioStephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University, and a member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, machine learning, and finance.

    Professor Boyd received an AB degree in Mathematics, summa cum laude, from Harvard University in 1980, and a PhD in EECS from U. C. Berkeley in 1985. In 1985 he joined Stanford's Electrical Engineering Department. He has held visiting Professor positions at Katholieke University (Leuven), McGill University (Montreal), Ecole Polytechnique Federale (Lausanne), Tsinghua University (Beijing), Universite Paul Sabatier (Toulouse), Royal Institute of Technology (Stockholm), Kyoto University, Harbin Institute of Technology, NYU, MIT, UC Berkeley, CUHK-Shenzhen, and IMT Lucca. He holds honorary doctorates from Royal Institute of Technology (KTH), Stockholm, and Catholic University of Louvain (UCL).

    Professor Boyd is the author of many research articles and four books: Introduction to Applied Linear Algebra: Vectors, Matrices, and Least-Squares (with Lieven Vandenberghe, 2018), Convex Optimization (with Lieven Vandenberghe, 2004), Linear Matrix Inequalities in System and Control Theory (with El Ghaoui, Feron, and Balakrishnan, 1994), and Linear Controller Design: Limits of Performance (with Craig Barratt, 1991). His group has produced many open source tools, including CVX (with Michael Grant), CVXPY (with Steven Diamond) and Convex.jl (with Madeleine Udell and others), widely used parser-solvers for convex optimization.

    He has received many awards and honors for his research in control systems engineering and optimization, including an ONR Young Investigator Award, a Presidential Young Investigator Award, and the AACC Donald P. Eckman Award. In 2013, he received the IEEE Control Systems Award, given for outstanding contributions to control systems engineering, science, or technology. In 2012, Michael Grant and he were given the Mathematical Optimization Society's Beale-Orchard-Hays Award, for excellence in computational mathematical programming. In 2023, he was given the AACC Richard E. Bellman Control Heritage Award, the highest recognition of professional achievement for U.S. control systems engineers and scientists. He is a Fellow of the IEEE, SIAM, INFORMS, and IFAC, a Distinguished Lecturer of the IEEE Control Systems Society, a member of the US National Academy of Engineering, a foreign member of the Chinese Academy of Engineering, and a foreign member of the National Academy of Engineering of Korea. He has been invited to deliver more than 90 plenary and keynote lectures at major conferences in control, optimization, signal processing, and machine learning.

    He has developed and taught many undergraduate and graduate courses, including Signals & Systems, Linear Dynamical Systems, Convex Optimization, and a recent undergraduate course on Matrix Methods. His graduate convex optimization course attracts around 300 students from more than 20 departments. In 1991 he received an ASSU Graduate Teaching Award, and in 1994 he received the Perrin Award for Outstanding Undergraduate Teaching in the School of Engineering. In 2003, he received the AACC Ragazzini Education award, for contributions to control education. In 2016 he received the Walter J. Gores award, the highest award for teaching at Stanford University. In 2017 he received the IEEE James H. Mulligan, Jr. Education Medal, for a career of outstanding contributions to education in the fields of interest of IEEE, with citation "For inspirational education of students and researchers in the theory and application of optimization."

  • Onn Brandman

    Onn Brandman

    Associate Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsThe Brandman Lab studies how cells sense and respond to stress. We employ an integrated set of techniques including single cell analysis, mathematical modeling, genomics, structural studies, and in vitro assays.

  • Mark Brongersma

    Mark Brongersma

    Stephen Harris Professor, Professor of Materials Science and Engineering and, by courtesy, of Applied Physics

    BioMark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD in Materials Science from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. During this time, he coined the term “Plasmonics” for a new device technology that exploits the unique optical properties of nanoscale metallic structures to route and manipulate light at the nanoscale. His current research is directed towards the development and physical analysis of nanostructured materials that find application in nanoscale electronic and photonic devices. Brongersma received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the Optical Society of America, the SPIE, and the American Physical Society.

  • Helen Bronte-Stewart, MD, MS

    Helen Bronte-Stewart, MD, MS

    John E. Cahill Family Professor, Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research focus is human motor control and brain pathophysiology in movement disorders. Our overall goal is to understand the role of the basal ganglia electrical activity in the pathogenesis of movement disorders. We have developed novel computerized technology to measure fine, limb and postural movement. With these we are measuring local field potentials in basal ganglia nuclei in patients with Parkinson's disease and dystonian and correlating brain signalling with motor behavior.

  • James D. Brooks

    James D. Brooks

    Keith and Jan Hurlbut Professor

    Current Research and Scholarly InterestsWe use genomic approaches to identify disease biomarkers. We are most interested in translating biomarkers into clinical practice in urological diseases with a particular focus in cancer.

  • Jennifer Brophy

    Jennifer Brophy

    Assistant Professor of Bioengineering

    Current Research and Scholarly InterestsWe develop technologies that enable the genetic engineering of plants and their associated microbes with the goal of driving innovation in agriculture for a sustainable future. Our work is focused in synthetic biology and the reprogramming of plant development for enhanced environmental stress tolerance.

  • Gordon Brown

    Gordon Brown

    Dorrell William Kirby Professor of Geology in the School of Earth Sciences, Emeritus

    Current Research and Scholarly InterestsSurface and interface geochemistry; environmental fate of heavy metals; nanotechnology, applications of synchrotron radiation in geochemistry and mineralogy

  • Martin Brown

    Martin Brown

    Professor of Radiation Oncology, Emeritus

    Current Research and Scholarly InterestsWe seek to understand the mechanisms responsible for the resistance of cancers to treatment and to develop strategies to overcome these resistances. We are using molecular and cellular techniques and mouse models to potentiate the activity of radiation on tumors by inhibiting the bone marrow rescue of the tumor vasculature following therapy.

  • Patrick O. Brown

    Patrick O. Brown

    Professor of Biochemistry, Emeritus

    Current Research and Scholarly InterestsDr. Brown, currently an emeritus professor, is founder of Impossible Foods, a company dedicated to replacing the world's most destructive technology - the use of animals to transform plant biomass into meat, fish and dairy foods - by developing a new and better way to produce the world's most delicious, nutritious and affordable meats, fish and dairy foods directly from plants. Visit impossiblefoods.com for more information. He is also founder and president of the Impossible Foundation.

  • Anne Brunet

    Anne Brunet

    Michele and Timothy Barakett Endowed Professor

    Current Research and Scholarly InterestsOur lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.