Bio-X


Showing 21-30 of 80 Results

  • Akshay Chaudhari

    Akshay Chaudhari

    Assistant Professor (Research) of Radiology (Integrative Biomedical Imaging Informatics at Stanford) and, by courtesy, of Biomedical Data Science

    Current Research and Scholarly InterestsDr. Chaudhari is interested in the application of artificial intelligence techniques to all aspects of medical imaging, including automated schedule and reading prioritization, image reconstruction, quantitative analysis, and prediction of patient outcomes. His interests range from developing novel data-efficient machine learning algorithms to clinical deployment and validation of patient outcomes. He is also exploring combining imaging with clinical, natural language, and time series data.

  • Ovijit Chaudhuri

    Ovijit Chaudhuri

    Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsWe study the physics of cell migration, division, and morphogenesis in 3D, as well cell-matrix mechanotransduction, or the process by which cells sense and respond to mechanical properties of the extracellular matrices. For both these areas, we use engineered biomaterials for 3D culture as artificial extracellular matrices.

  • Bertha Chen, MD

    Bertha Chen, MD

    Professor of Obstetrics and Gynecology (Gynecology - Urogynecology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsDr. Chen’s research examines the molecular causes of urinary incontinence and pelvic floor dysfunction. Recognizing that urinary incontinence linked to demise of smooth muscle sphincter function, she is investigating the potential use of stem cell regeneration to restore muscle capacity.

  • James K. Chen

    James K. Chen

    Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry

    Current Research and Scholarly InterestsOur laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Jonathan H. Chen, MD, PhD

    Jonathan H. Chen, MD, PhD

    Assistant Professor of Medicine (Biomedical Informatics)

    Current Research and Scholarly InterestsInformatics solutions ares the only credible approach to systematically address challenges of escalating complexity in healthcare. Tapping into real-world clinical data streams like electronic medical records will reveal the community's latent knowledge in a reproducible form. Delivering this back as clinical decision support will uniquely close the loop on a continuously learning health system.

  • Lu Chen

    Lu Chen

    Professor of Neurosurgery and of Psychiatry and Behavioral Sciences
    On Leave from 11/01/2023 To 04/30/2024

    Current Research and Scholarly InterestsWhat distinguishes us humans from other animals is our ability to undergo complex behavior. The synapses are the structural connection between neurons that mediates the communication between neurons, which underlies our various cognitive function. My research program aims to understand the cellular and molecular mechanisms that underlie synapse function during behavior in the developing and mature brain, and how synapse function is altered during mental retardation.

  • Xiaoke Chen

    Xiaoke Chen

    Associate Professor of Biology

    Current Research and Scholarly InterestsOur goal is to understand how brain circuits mediate motivated behaviors and how maladaptive changes in these circuits cause mood disorders. To achieve this goal, we focus on studying the neural circuits for pain and addiction, as both trigger highly motivated behaviors, whereas, transitioning from acute to chronic pain or from recreational to compulsive drug use involves maladaptive changes of the underlying neuronal circuitry.

  • Alan G. Cheng, MD

    Alan G. Cheng, MD

    Edward C. and Amy H. Sewall Professor in the School of Medicine, Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsActive Wnt signaling maintains somatic stem cells in many organ systems. Using Wnt target genes as markers, we have characterized distinct cell populations with stem cell behavior in the inner ear, an organ thought to be terminally differentiated. Ongoing work focuses on delineating the developing significance of these putative stem/progenitor cells and their behavior after damage.

  • Paul Cheng MD PhD

    Paul Cheng MD PhD

    Assistant Professor of Medicine (Cardiovascular Medicine)

    BioDr. Cheng is a Cardiologist at Stanford University School of Medicine in the Department of Medicine and a member of the Cardiovascular Research Institute. Dr. Cheng received his BEng in Chemical Engineering and BSc in biology at MIT. He subsequently completed his MD/PhD at UCSF working in the Srivastava lab studying how extracellular morphogenic signals affect cardiac development and fate determination of cardiac progenitors. Dr. Cheng completed internal medicine residency and cardiology fellowship at Stanford. His current clinical focus is in amyloidosis and cardio-oncology. During his post doctoral research in the Quertermous lab, he pioneered the application of single cell transcriptomic and epigenetic techniques to study human vascular diseases including atherosclerosis and aneurysm, and applied these techniques to investigate molecular mechanisms behind genetic risk factors for several human vascular diseases including atherosclerosis, and aortopathies such as Marfan's and Loey-Dietz syndrome.

    The Cheng lab takes a patient-to-bench-to-bedside approach to science. The lab focuses on elucidating new pathogenic mechanisms of human vascular diseases through combing human genetics and primary vascular disease tissues, with high-resolution transcriptomic and epigenetic profiling to generate novel hypothesis that are then tested in a variety of in vitro and in vivo models. The lab is focused on two broad questions: (1) understanding the biological underpinning of the differences in diseases propensities of different arterial segments in an individual (i.e. why do you have atherosclerosis and aneurysms in certain segments but not others), and (2) understanding the role of perivascular fibroblast in human vascular diseases.