Bio-X


Showing 51-60 of 80 Results

  • Michael F. Clarke, M.D.

    Michael F. Clarke, M.D.

    Karel H. and Avice N. Beekhuis Professor of Cancer Biology

    Current Research and Scholarly InterestsDr. Clarke maintains a laboratory focused on two areas of research: i) the control of self-renewal of normal stem cells and diseases such as cancer and hereditary diseases; and ii) the identification and characterization of cancer stem cells. His laboratory is investigating how perturbations of stem cell regulatory machinery contributes to human disease. In particular, the laboratory is investigating epigenetic regulators of self renewal, the process by which stem cells regenerate themselves.

  • Carol Clayberger

    Carol Clayberger

    Professor (Research) of Pediatrics, Emerita

    Current Research and Scholarly InterestsOur group uses molecular biology, biochemistry, and cellular immunology to investigate the activation and effector function of T lymphocytes. Research in the laboratory is currently focused on three areas: granulysin, a lytic molecule expressed late (7-12 days) after T cell activation; identification of correlates of immunity in diseases such as tuberculosis; and tolerance. The long term goal of this work is to develop new ways to treat human disease.

  • William Clusin, MD

    William Clusin, MD

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsCardiac action potentials; tissue culture, voltage, clamp technique; role of calcium in ischemia arrhythmias; coronary, artery disease; myocardial infarction.

  • Maria Inmaculada Cobos Sillero

    Maria Inmaculada Cobos Sillero

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsOur lab uses cellular and molecular methods, single-cell technology, and quantitative histology to study human neurodegenerative diseases. Current projects include:

    - Using single-cell RNA-sequencing to understand selective vulnerability and disease progression in human Alzheimer’s disease brain

    - Investigating mechanisms of tau-related neurodegeneration in human brain

    - Studying the neocortical and limbic systems in Diffuse Lewy Body Disease (DLBD) at the single cell level

  • Jennifer R. Cochran

    Jennifer R. Cochran

    Senior Associate Vice Provost for Research, Addie and Al Macovski Professor and Professor of Bioengineering

    Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology

  • Harvey Cohen

    Harvey Cohen

    Deborah E. Addicott - John A. Kriewall and Elizabeth A. Haehl Family Professor of Pediatrics, Emeritus

    Current Research and Scholarly InterestsMy research interests extend from hypothesis-driven studies in biochemistry and cell biology to discovery-driven interests in proteomics and systems biology to clinical treatment of acute lymphoblastic leukemia of children, and pediatric palliative care.

  • Stanley N. Cohen, MD

    Stanley N. Cohen, MD

    Kwoh-Ting Li Professor in the School of Medicine, Professor of Genetics and of Medicine

    Current Research and Scholarly InterestsWe study mechanisms that affect the expression and decay of normal and abnormal mRNAs, and also RNA-related mechanisms that regulate microbial antibiotic resistance. A small bioinformatics team within our lab has developed knowledge based systems to aid in investigations of genes.

  • Todd Coleman

    Todd Coleman

    Associate Professor of Bioengineering and, by courtesy, of Electrical Engineering

    BioTodd P. Coleman is an Associate Professor in the Department of Bioengineering, and by courtesy, Electrical Engineering at Stanford University. He received B.S. degrees in electrical engineering (summa cum laude), as well as computer engineering (summa cum laude) from the University of Michigan (Go Blue). He received M.S. and Ph.D. degrees from MIT in electrical engineering and computer science. He did postdoctoral studies at MIT and Mass General Hospital in quantitative neuroscience. He previously was a faculty member in the Departments of Electrical & Computer Engineering and Bioengineering at the University of Illinois, Urbana-Champaign, and the University of California, San Diego, respectively. Dr. Coleman’s research is very multi-disciplinary, using tools from applied probability, physiology, and bioelectronics. Examples include, for instance, optimal transport methods in high-dimensional uncertainty quantification and developing technologies and algorithms to monitor and modulate physiology of the nervous systems in the brain and visceral organs. He has served as a Principal Investigator on grants from the NSF, NIH, Department of Defense, and multiple private foundations. Dr. Coleman is an inventor on 10 granted US patents. He has been selected as a Gilbreth Lecturer for the National Academy of Engineering, a TEDMED speaker, and a Fellow of IEEE as well as the American Institute for Medical and Biological Engineering. He is currently the Chair of the National Academies Standing Committee on Biotechnology Capabilities and National Security Needs.

  • Steven Hartley Collins

    Steven Hartley Collins

    Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    BioSteve Collins is an Associate Professor of Mechanical Engineering at Stanford University, where he teaches courses on design and robotics and directs the Stanford Biomechatronics Laboratory. His primary focus is to speed and systematize the design and prescription of prostheses and exoskeletons using versatile device emulator hardware and human-in-the-loop optimization algorithms (Zhang et al. 2017, Science). Another interest is efficient autonomous devices, such as highly energy-efficient walking robots (Collins et al. 2005, Science) and exoskeletons that use no energy yet reduce the metabolic energy cost of human walking (Collins et al. 2015, Nature).

    Prof. Collins received his B.S. in Mechanical Engineering in 2002 from Cornell University, where he performed undergraduate research on passive dynamic walking robots. He received his Ph.D. in Mechanical Engineering in 2008 from the University of Michigan, where he performed research on the dynamics and control of human walking. He performed postdoctoral research on humanoid robots at T. U. Delft in the Netherlands. He was a professor of Mechanical Engineering and Robotics at Carnegie Mellon University for seven years. In 2017, he joined the faculty of Mechanical Engineering at Stanford University.

    Prof. Collins is a member of the Scientific Board of Dynamic Walking and the Editorial Board of Science Robotics. He has received the Young Scientist Award from the American Society of Biomechanics, the Best Medical Devices Paper from the International Conference on Robotics and Automation, and the student-voted Professor of the Year in his department.

  • Le Cong

    Le Cong

    Assistant Professor of Pathology (Pathology Research) and of Genetics

    Current Research and Scholarly InterestsOur lab are developing gene-editing technologies, such as CRISPR systems for in vivo therapy, and cleavage-free techniques for large gene insertion via microbial recombinase. Our team also pioneers in single-cell tracking for cancer and immunology studies using novel CRISPR tools. To accelerate our work, we integrate AI and machine learning into these technologies, design and evolve proteins/RNAs, pushing frontiers in understanding and treating neurological and immunological disease.