Bio-X


Showing 11-20 of 48 Results

  • Rajesh Dash, MD PhD;      Director of SSATHI & CardioClick

    Rajesh Dash, MD PhD; Director of SSATHI & CardioClick

    Associate Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

    Current Research and Scholarly InterestsI have two research areas:
    1) Heart disease in South Asians - genetic, metabolic, & behavioral underpinnings of an aggressive phenotype.

    2) Imaging cell injury & recovery in the heart. Using Cardiac MRI to visualize signals of early injury and facilitating preventive medical therapy. Optimizing new imaging methods for viable cells to delineate live heart cells or transplanted stem cells.

  • Laura M.K. Dassama

    Laura M.K. Dassama

    Assistant Professor of Chemistry

    BioThe Dassama laboratory at Stanford performs research directed at understanding and mitigating bacterial multidrug resistance (MDR). Described as an emerging crisis, MDR often results from the misuse of antibiotics and the genetic transfer of resistance mechanisms by microbes. Efforts to combat MDR involve two broad strategies: understanding how resistance is acquired in hopes of mitigating it, and identifying new compounds that could serve as potent antibiotics. The successful implementation of both strategies relies heavily on an interdisciplinary approach, as resistance mechanisms must be elucidated on a molecular level, and formation of new drugs must be developed with precision before they can be used. The laboratory uses both strategies to contribute to current MDR mitigation efforts.

    One area of research involves integral membrane proteins called multidrug and toxin efflux (MATE) pumps that have emerged as key players in MDR because their presence enables bacteria to secrete multiple drugs.The genes encoding these proteins are present in many bacterial genomes. However, the broad substrate range and challenges associated with membrane protein handling have hindered efforts to elucidate and exploit transport mechanisms of MATE proteins. To date, substrates identified for MATE proteins are small and ionic drugs, but recent reports have implicated these proteins in efflux of novel natural product substrates. The group’s approach will focus on identifying the natural product substrates of some of these new MATE proteins, as well as obtaining static and dynamic structures of the proteins during efflux. These efforts will define the range of molecules that can be recognized and effluxed by MATE proteins and reveal how their transport mechanisms can be exploited to curtail drug efflux.

    Another research direction involves the biosynthesis of biologically active natural products. Natural products are known for their therapeutic potential, and those that derive from modified ribosomal peptides are an important emerging class. These ribosomally produced and post-translationally modified peptidic (RiPP) natural products have the potential to substantially diversify the chemical composition of known molecules because the peptides they derive from can tolerate sequence variance, and modifying enzymes can be selected to install specific functional groups. With an interest in producing new antimicrobial and anticancer compounds, the laboratory will exploit the versatility of RiPP natural product biosynthesis. Specifically, efforts in the laboratory will revolve around elucidating the reaction mechanisms of particular biosynthetic enzymes and leveraging that understanding to design and engineer new natural products with desired biological activities.

  • Reinhold Dauskardt

    Reinhold Dauskardt

    Ruth G. and William K. Bowes Professor in the School of Engineering and Professor, by courtesy, of Surgery

    BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.

  • Jenna Davis

    Jenna Davis

    Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsProfessor Davis’ research and teaching deals broadly with the role that water and sanitation services play in promoting public health and economic development, with particular emphasis on low- and middle-income countries. Her group conducts applied research that utilizes theory and analytical methods from public and environmental health, engineering, microeconomics, and planning. They have conducted field research in more than 20 countries, most recently including Zambia, Bangladesh, and Kenya.

  • Kara Davis

    Kara Davis

    Assistant Professor of Pediatrics (Hematology/Oncology) at the Lucile Salter Packard Children's Hospital

    Current Research and Scholarly InterestsChildhood cancers can be considered aberrations of normal tissue development. We are interested in understanding childhood cancers through the lens of normal development. Further, individual tumors are composed of heterogeneous cell populations, not all cells being equal in their ability to respond to treatment or to repopulate a tumor. Thus, we take single cell approach to determine populations of clinical relevance.

  • Mark M. Davis

    Mark M. Davis

    Director, Stanford Institute for Immunity, Transplantation and Infection and the Burt and Marion Avery Family Professor

    Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.

  • Ronald W. Davis

    Ronald W. Davis

    Professor of Biochemistry and of Genetics

    Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.

  • Vinicio de Jesus Perez MD

    Vinicio de Jesus Perez MD

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly InterestsMy work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.

  • Adam de la Zerda

    Adam de la Zerda

    Associate Professor of Structural Biology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsMolecular imaging technologies for studying cancer biology in vivo

  • Luis de Lecea

    Luis de Lecea

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical and Translational Neurosciences Incubator)
    On Leave from 03/09/2020 To 10/18/2020

    Current Research and Scholarly InterestsMy lab uses molecular, optogenetic, anatomical and behavioral methods to identify and manipulate the neuronal circuits underlying brain arousal, with particular attention to sleep and wakefulness transitions. We are also interested in the changes that occur in neuronal circuits in conditions of hyperarousal such as stress and drug addiction.