Bio-X
Showing 41-43 of 43 Results
-
Gerald Fuller
Fletcher Jones Professor in the School of Engineering
BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).
The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.
There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films. -
Margaret T. Fuller
Reed-Hodgson Professor of Human Biology, Katharine Dexter McCormick and Stanley McCormick Memorial Professor and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)
Current Research and Scholarly InterestsRegulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.
-
Lawrence Fung MD PhD
Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)
On Partial Leave from 10/01/2024 To 11/29/2024Current Research and Scholarly InterestsDr. Lawrence Fung an Associate Professor in the Department of Psychiatry and Behavioral Sciences at Stanford University. He is the director of the Stanford Neurodiversity Project, director of the Neurodiversity Clinic, and principal investigator at the Fung Lab. His work, which focuses on autism and neurodiversity, traverses from multi-modal neuroimaging studies to new conceptualization of neurodiversity and its application to clinical, education, and employment settings. His lab advances the understanding of neural bases of human socio-communicative and cognitive functions by using novel neuroimaging and bioanalytical technologies. Using community-based participatory research approach, his team devises and implements novel interventions to improve the lives of neurodiverse individuals by maximizing their potential and productivity. His work has been supported by various agencies including the National Institutes of Health, Autism Speaks, California Department of Developmental Services, California Department of Rehabilitation, as well as philanthropy. He received his PhD in chemical engineering from Cornell University, and MD from George Washington University. He completed his general psychiatry residency, child and adolescent psychiatry fellowship, and postdoctoral research fellowship at Stanford.