Bio-X


Showing 41-50 of 71 Results

  • Benjamin Good

    Benjamin Good

    Assistant Professor of Applied Physics

    BioBenjamin Good is a theoretical biophysicist with a background in experimental evolution and population genetics. He is interested in the short-term evolutionary dynamics that emerge in rapidly evolving microbial populations like the gut microbiome. Technological advances are revolutionizing our ability to peer into these evolving ecosystems, providing us with an increasingly detailed catalog of their component species, genes, and pathways. Yet a vast gap still remains in understanding the population-level processes that control their emergent structure and function. Our group uses tools from statistical physics, population genetics, and computational biology to understand how microscopic growth processes and genome dynamics at the single cell level give rise to the collective behaviors that can be observed at the population level. Projects range from basic theoretical investigations of non-equilibrium processes in microbial evolution and ecology, to the development of new computational tools for measuring these processes in situ in both natural and experimental microbial communities. Through these specific examples, we seek to uncover unifying theoretical principles that could help us understand, forecast, and eventually control the ecological and evolutionary dynamics that take place in these diverse scenarios.

  • Zinaida Good, Ph.D.

    Zinaida Good, Ph.D.

    Assistant Professor of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsOur laboratory integrates cutting-edge synthetic biology, immunology, and machine learning to engineer T cell therapies for cancer and autoimmune diseases. We have 3 research areas:
    - Analysis of clinical single-cell and spatial transcriptomics datasets from T cell therapy trials to identify mechanisms of resistance
    - Building AI systems to generate T cell designs predicted to improve patient outcomes
    - Genetic screens of novel T cell designs in models that mimic key mechanisms of resistance

  • Miriam B. Goodman

    Miriam B. Goodman

    Mrs. George A. Winzer Professor of Cell Biology

    Current Research and Scholarly InterestsWe study the molecular events that give rise to the sensation of touch and chemical stressors that compromise touch sensation in C. elegans. To do this, we use a combination of quantitative behavioral analysis, genetics, in vivo electrophysiology, and heterologous expression of ion channels. We collaborate with physicists and other physiologist to expand our experimental research.

  • Stuart Goodman, MD, PhD

    Stuart Goodman, MD, PhD

    The Robert L. and Mary Ellenburg Professor of Surgery and Professor, by courtesy, of Bioengineering
    On Partial Leave from 09/01/2024 To 08/31/2025

    Current Research and Scholarly InterestsAs an academic orthopaedic surgeon, my interests center on adult reconstructive surgery, arthritis surgery, joint replacement, biomaterials, biocompatibility, tissue engineering, mesenchymal stem cells. Collaborative clinical, applied and basic research studies are ongoing.

  • Kenneth Goodson

    Kenneth Goodson

    Vice Provost for Graduate Education and Postdoctoral Affairs, Davies Family Provostial Professor, and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.

  • William Rowland Goodyer, MD/PhD

    William Rowland Goodyer, MD/PhD

    Assistant Professor of Pediatrics (Cardiology)

    BioDr. Goodyer is a physician scientist who specializes in Pediatric Cardiology and Electrophysiology. Will graduated from McGill University (Montreal, Canada) with a BSc in Biology prior to completing his graduate studies at Stanford University in the Medical Scientist Training Program (MSTP). He subsequently completed residency training in Pediatrics at Boston Children’s Hospital before returning to Stanford to complete a fellowship in Pediatric Cardiology and advanced fellowship in Pediatric Electrophysiology. He additionally performed a postdoctoral fellowship in the Sean Wu laboratory at the Stanford Cardiovascular Institute where he developed the first comprehensive single-cell gene atlas of the entire murine cardiac conduction system (CCS) as well as pioneered the generation of optical imaging agents for the real-time visualization of the CCS to help prevent accidental surgical damage during heart surgeries. Will's lab (www.goodyerlab.com) focuses on basic science advances aimed at the improved diagnosis and treatment of cardiac arrhythmias.

  • Deborah M Gordon

    Deborah M Gordon

    Paul S. and Billie Achilles Professor of Environmental Biology

    Current Research and Scholarly InterestsProfessor Deborah M Gordon studies the evolutionary ecology of collective behavior. Ant colonies operate without central control, using local interactions to regulate colony behavior.

  • Jorg Goronzy

    Jorg Goronzy

    Professor of Medicine (Immunology and Rheumatology), Emeritus

    Current Research and Scholarly InterestsT cell homeostasis and function with age

  • Ian Gotlib

    Ian Gotlib

    Marjorie Mhoon Fair Professor

    Current Research and Scholarly InterestsCurrent interests include social, cognitive, and biological factors in affective disorders; neural and cognitive processing of emotional stimuli and reward by depressed persons; behavioral activation and anhedonia in depression; social, emotional, and biological risk factors for depression in children.

  • Or Gozani

    Or Gozani

    Dr. Morris Herzstein Professor
    On Leave from 01/01/2025 To 06/30/2025

    Current Research and Scholarly InterestsWe study the molecular mechanisms by which chromatin-signaling networks effect nuclear and epigenetic programs, and how dysregulation of these pathways leads to disease. Our work centers on the biology of lysine methylation, a principal chromatin-regulatory mechanism that directs epigenetic processes. We study how lysine methylation events are generated, sensed, and transduced, and how these chemical marks integrate with other nuclear signaling systems to govern diverse cellular functions.