Bio-X


Showing 1-64 of 64 Results

  • Shamit Kachru

    Shamit Kachru

    Professor of Physics and Director, Stanford Institute for Theoretical Physics, Emeritus

    Current Research and Scholarly InterestsMy current research is focused in three directions:

    — Mathematical aspects of string theory (with a focus on BPS state counts, black holes, and moonshine)

    — Quantum field theory approaches to condensed matter physics (with a focus on physics of non-Fermi liquids)

    — Theoretical biology, with a focus on evolution and ecology

  • Joseph Kahn

    Joseph Kahn

    Professor of Electrical Engineering

    BioJoseph M. Kahn is a Professor of Electrical Engineering at Stanford University. His research addresses communication and imaging through optical fibers, including modulation, detection, signal processing and spatial multiplexing. He received A.B. and Ph.D. degrees in Physics from U.C. Berkeley in 1981 and 1986. From 1987-1990, he was at AT&T Bell Laboratories, Crawford Hill Laboratory, in Holmdel, NJ. He was on the Electrical Engineering faculty at U.C. Berkeley from 1990-2003. In 2000, he co-founded StrataLight Communications, which was acquired by Opnext, Inc. in 2009. He received the National Science Foundation Presidential Young Investigator Award in 1991 and is a Fellow of the IEEE.

  • A Dale Kaiser

    A Dale Kaiser

    Member, Bio-X

    Current Research and Scholarly InterestsHow are genes regulated to construct a developmental program? How do signals received from other cells change the program and coordinate it for multicellular development? The approach taken by our laboratory group to answer these questions utilizes biochemistry and genetics; genetics to isolate mutants that have particular defects in development and biochemistry to determine the molecular basis of the defects. We study swarming in Myxococcus xanthus that builds fruiting bodies.

  • Anusha Kalbasi, M.D.

    Anusha Kalbasi, M.D.

    Associate Professor of Radiation Oncology (Radiation Therapy)

    BioDr. Kalbasi is a board-certified radiation oncologist and physician-scientist at the Stanford Cancer Institute. He is also an associate professor of radiation oncology at Stanford Medicine and a project member of the Parker Institute for Cancer Immunotherapy.

    In the clinic, Dr. Kalbasi specializes in the diagnosis and treatment of solid tumors, especially sarcoma and melanoma, with a focus on bringing new treatments to patients. This focus includes using advanced techniques in radiation oncology and cancer immunotherapy.

    Dr. Kalbasi's NIH-funded laboratory studies the cancer-immune interface in various therapeutic contexts, including T cell therapy, cytokine therapy and innate immune agonism. The lab has described tumor cell-, T cell- and myeloid cell-intrinsic mechanisms of resistance to therapy and approaches to overcome therapy resistance. Dr. Kalbasi is also an experienced leader of clinical trials related to immunotherapy, T cell therapy and radiation therapy.

    Prior to his arrival at Stanford Health Care, Dr. Kalbasi was assistant professor of radiation oncology in the David Geffen School of Medicine at UCLA and chief of sarcoma radiotherapy at the UCLA Jonsson Comprehensive Cancer Center. During his tenure, he was named a NextGen Star by the American Association of Cancer Research in recognition for excellence in cancer research.

    Dr. Kalbasi’s work has been published in leading journals including Nature, Science Translational Medicine, JAMA Oncology, Lancet Oncology, Nature Cancer and Cancer Discovery. He has served as a peer reviewer for multiple prestigious journals, including the Proceedings of the National Academy of Sciences, Cell and the Journal of Clinical Investigation. He has also presented research to his peers at the American Association for Cancer Research and the American Institute of Chemical Engineers.

  • Julia Kaltschmidt

    Julia Kaltschmidt

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsThe lab’s primary research interest is to understand how specific neuronal circuits are established. We use mouse genetics, combinatorial immunochemical labeling and high-resolution laser scanning microscopy to identify, manipulate, and quantitatively analyze synaptic contacts within the complex neuronal milieu of the spinal cord and the enteric nervous system.

  • Aya Kamaya, MD

    Aya Kamaya, MD

    Professor of Radiology (Body Imaging)

    Current Research and Scholarly InterestsHepatobiliary imaging
    Hepatocellular carcinoma
    Urologic imaging
    Gynecologic imaging
    Thyroid imaging
    Novel ultrasound technologies
    Perfusion CT imaging of abdominal tumors

  • Matthew Kanan

    Matthew Kanan

    Professor of Chemistry

    BioAssociate Professor of Chemistry Matthew Kanan develops new catalysts and chemical reactions for applications in renewable energy conversion and CO2 utilization. His group at Stanford University has recently developed a novel method to create plastic from carbon dioxide and inedible plant material rather than petroleum products, and pioneered the study of “defect-rich” heterogeneous electro-catalysts for converting carbon dioxide and carbon monoxide to liquid fuel.

    Matthew Kanan completed undergraduate study in chemistry at Rice University (B.A. 2000 Summa Cum Laude, Phi Beta Kappa). During doctoral research in organic chemistry at Harvard University (Ph.D. 2005), he developed a novel method for using DNA to discover new chemical reactions. He then moved into inorganic chemistry for his postdoctoral studies as a National Institutes of Health Postdoctoral Research Fellow at the Massachusetts Institute of Technology, where he discovered a water oxidation catalyst that operates in neutral water. He joined the Stanford Chemistry Department faculty in 2009 to continue research into energy-related catalysis and reactions. His research and teaching have already been recognized in selection as one of Chemistry & Engineering News’ first annual Talented 12, the Camille Dreyfus Teacher-Scholar Award, Eli Lilly New Faculty Award, and recognition as a Camille and Henry Dreyfus Environmental Mentor, among other honors.

    The Kanan Lab addresses fundamental challenges in catalysis and synthesis with an emphasis on enabling new technologies for scalable CO2 utilization. The interdisciplinary effort spans organic synthesis, materials chemistry and electrochemistry.

    One of the greatest challenges of the 21st century is to transition to an energy economy with ultra-low greenhouse gas emissions without compromising quality of life for a growing population. The Kanan Lab aims to help enable this transition by developing catalysts and chemical reactions that recycle CO2 into fuels and commodity chemicals using renewable energy sources. To be implemented on a substantial scale, these methods must ultimately be competitive with fossil fuels and petrochemicals. With this requirement in mind, the group focuses on the fundamental chemical challenge of making carbon–carbon (C–C) bonds because multi-carbon compounds have higher energy density, greater value, and more diverse applications that one-carbon compounds. Both electrochemical and chemical methods are being pursued. For electrochemical conversion, the group studies how defects known as grain boundaries can be exploited to improve CO2/CO electro-reduction catalysis. Recent work has unveiled quantitative correlations between grain boundaries and catalytic activity, establishing a new design principle for electrocatalysis, and developed grain boundary-rich copper catalysts with unparalleled activity for converting carbon monoxide to liquid fuel. For chemical CO2 conversion, the group is developing C–H carboxylation and CO2 hydrogenation reactions that are promoted by simple carbonate salts. These reactions provide a way to make C–C bonds between un-activated substrates and CO2 without resorting to energy-intensive and hazardous reagents. Among numerous applications, carbonate-promoted carboxylation enables the synthesis of a monomer used to make polyester plastic from CO2 and a feedstock derived from agricultural waste.

    In addition to CO2 chemistry, the Kanan group is pursuing new strategies to control selectivity in molecular catalysis for fine chemical synthesis. Of particular interest in the use of electrostatic interactions to discriminate between competing reaction pathways based on their charge distributions. This effort uses ion pairing or interfaces to control the local electrostatic environment in which a reaction takes place. The group has recently shown that local electric fields can control regioselectivity in isomerization reactions catalyzed by gold complexes.

  • Peter Kao

    Peter Kao

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly InterestsOur research program has several active projects:
    1.) Pulmonary Vascular Disease – Simvastatin reversed experimental pulmonary hypertension, and is safe for treatment of patients. Blinded clinical trials of efficacy are in progress.
    2.) Lung inflammation and regeneration (stem cells)
    3.) Lung surfactant rheology and oxidative stress
    4.) Gene regulation by RNA binding proteins, NF45 and NF90 through transcriptional and posttranscriptional mechanisms

  • Ioannis Karakikes

    Ioannis Karakikes

    Associate Professor (Research) of Cardiothoracic Surgery

    Current Research and Scholarly InterestsThe Karakikes Lab aims to uncover fundamental new insights into the molecular mechanisms and functional consequences of pathogenic mutations associated with familial cardiovascular diseases.

  • Hemamala Karunadasa

    Hemamala Karunadasa

    Professor of Chemistry

    BioProfessor Hema Karunadasa works with colleagues in materials science, earth science, and applied physics to drive the discovery of new materials with applications in clean energy. Using the tools of synthetic chemistry, her group designs materials that couple the structural tunability of organic molecules with the diverse electronic and optical properties of extended inorganic solids. This research targets materials such as sorbents for capturing environmental pollutants, phosphors for solid-state lighting, and absorbers for solar cells.

    Hemamala Karunadasa studied chemistry and materials science at Princeton University (A.B. with high honors 2003; Certificate in Materials Science and Engineering 2003), where her undergraduate thesis project with Professor Robert J. Cava examined geometric magnetic frustration in metal oxides. She moved from solid-state chemistry to solution-state chemistry for her doctoral studies in inorganic chemistry at the University of California, Berkeley (Ph.D. 2009) with Professor Jeffrey R. Long. Her thesis focused on heavy atom building units for magnetic molecules and molecular catalysts for generating hydrogen from water. She continued to study molecular electrocatalysts for water splitting during postdoctoral research with Berkeley Professors Christopher J. Chang and Jeffrey R. Long at the Lawrence Berkeley National Lab. She further explored molecular catalysts for hydrocarbon oxidation as a postdoc at the California Institute of Technology with Professor Harry B. Gray. She joined the Stanford Chemistry Department faculty in September 2012. Her research explores solution-state routes to new solid-state materials.

    Professor Karunadasa’s lab at Stanford takes a molecular approach to extended solids. Lab members gain expertise in solution- and solid-state synthetic techniques and structure determination through powder- and single-crystal x-ray diffraction. Lab tools also include a host of spectroscopic and electrochemical probes, imaging methods, and film deposition techniques. Group members further characterize their materials under extreme environments and in operating devices to tune new materials for diverse applications in renewable energy.

    Please visit the lab website for more details and recent news.

  • Maya M. Kasowski

    Maya M. Kasowski

    Assistant Professor of Pathology, of Medicine (Pulmonary, Allergy and Critical Care Medicine) and, by courtesy, of Genetics

    BioI am a clinical pathologist and assistant professor in the Departments of Medicine, Pathology, and Genetics (by courtesy) at Stanford. I completed my MD-PhD training at Yale University and my residency training and a post-doctoral fellowship in the Department of Genetics at Stanford University. My experiences as a clinical pathologist and genome scientist have made me passionate about applying cutting-edge technologies to primary patient specimens in order to characterize disease pathologies at the molecular level. The core focus of my lab is to study the mechanisms by which genetic variants influence the risk of disease through effects on intermediate molecular phenotypes.

  • Riitta Katila

    Riitta Katila

    W.M. Keck Professor and Professor of Management Science and Engineering

    Current Research and Scholarly InterestsThe question that drives Prof. Katila's research is how technology-based firms with significant resources can stay innovative. Her work lies at the intersection of the fields of technology, innovation, and strategy and focuses on strategies that enable organizations to discover, develop and commercialize technologies. She combines theory with longitudinal large-sample data (e.g., robotics, biomedical, platform and multi-industry datasets), background fieldwork, and state-of-the-art quantitative methods. The ultimate objective is to understand what makes technology-based firms successful.

    To answer this question, Prof. Katila conducts two interrelated streams of research. She studies (1) strategies that help firms leverage their existing resources (leverage stream), and (2) strategies through which firms can acquire new resources (acquisition stream) to create innovation. Her early contributions were firm centric while recent contributions focus on innovation in the context of competitive interaction and ecosystems.

    Professor Katila's work has appeared in the Academy of Management Journal, Administrative Science Quarterly, Organization Science, Strategic Entrepreneurship Journal, Strategy Science, Strategic Management Journal, Research Policy and other outlets. In her work, supported by the National Science Foundation, Katila examines how firms create new products successfully. Focusing on the robotics and medical device industries, she investigates how different search approaches, such as the exploitation of existing knowledge and the exploration for new knowledge, influence the kinds of new products that technology-intensive firms introduce.

  • Laurence Katznelson, MD

    Laurence Katznelson, MD

    Professor of Neurosurgery, Emeritus

    Current Research and Scholarly InterestsDr. Katznelson is an internationally known neuroendocrinologist and clinical researcher, with research expertise in the diagnosis and management of hypopituitarism, the effects of hormones on neurocognitive function, and the development of therapeutics for acromegaly and Cushing’s syndrome, and neuroendocrine tumors. Dr. Katznelson is the medical director of the multidisciplinary Stanford Pituitary Center, a program geared for patient management, clinical research and patient education

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor of Pediatrics, and Professor of Genetics

    Current Research and Scholarly InterestsMark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Electron Kebebew, MD, FACS

    Electron Kebebew, MD, FACS

    Harry A. Oberhelman, Jr. and Mark L. Welton Professor

    Current Research and Scholarly InterestsDr. Kebebew’s translational and clinical investigations have three main scientific goals: 1) to develop effective therapies for fatal, rare and neglected endocrine cancers, 2) to identify new methods, strategies and technologies for improving the diagnosis and treatment of endocrine neoplasms and the prognostication of endocrine cancers, and 3) to develop methods for precision treatment of endocrine tumors.

  • Corey Keller, MD, PhD

    Corey Keller, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    Current Research and Scholarly InterestsThe goal of my lab is to understand the fundamental principles of human brain plasticity and build trans-diagnostic real-time monitoring platforms for personalized neurotherapeutics.

    We use an array of neuroscience methods to better understand the basic principles of how to create change in brain circuits. We use this knowledge to develop more effective treatment strategies for depression and other psychiatric disorders.

  • Monroe Kennedy III

    Monroe Kennedy III

    Assistant Professor of Mechanical Engineering

    Current Research and Scholarly InterestsMy research focus is to develop technology that improves everyday life by anticipating and acting on the needs of human counterparts. My research can be divided into the following sub-categories: robotic assistants, connected devices and intelligent wearables. My Assistive Robotics and Manipulation lab focuses heavily on both the analytical and experimental components of assistive technology design.

  • Thomas Kenny

    Thomas Kenny

    Senior Associate Dean for Education and Student Affairs and Richard W. Weiland Professor in the School of Engineering

    BioKenny's group is researching fundamental issues and applications of micromechanical structures. These devices are usually fabricated from silicon wafers using integrated circuit fabrication tools. Using these techniques, the group builds sensitive accelerometers, infrared detectors, and force-sensing cantilevers. This research has many applications, including integrated packaging, inertial navigation, fundamental force measurements, experiments on bio-molecules, device cooling, bio-analytical instruments, and small robots. Because this research field is multidisciplinary in nature, work in this group is characterized by strong collaborations with other departments, as well as with local industry.

  • Oussama Khatib

    Oussama Khatib

    Weichai Professor and Professor, by courtesy, of Electrical Engineering

    BioRobotics research on novel control architectures, algorithms, sensing, and human-friendly designs for advanced capabilities in complex environments. With a focus on enabling robots to interact cooperatively and safely with humans and the physical world, these studies bring understanding of human movements for therapy, athletic training, and performance enhancement. Our work on understanding human cognitive task representation and physical skills is enabling transfer for increased robot autonomy. With these core capabilities, we are exploring applications in healthcare and wellness, industry and service, farms and smart cities, and dangerous and unreachable settings -- deep in oceans, mines, and space.

  • Paul A. Khavari, MD, PhD

    Paul A. Khavari, MD, PhD

    Carl J. Herzog Professor of Dermatology in the School of Medicine

    Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Butrus Khuri-Yakub

    Butrus Khuri-Yakub

    Professor (Research) of Electrical Engineering, Emeritus

    BioButrus (Pierre) T. Khuri-Yakub is a Professor of Electrical Engineering at Stanford University. He received the BS degree from the American University of Beirut, the MS degree from Dartmouth College, and the Ph.D. degree from Stanford University, all in electrical engineering. His current research interests include medical ultrasound imaging and therapy, ultrasound neuro-stimulation, chemical/biological sensors, gas flow and energy flow sensing, micromachined ultrasonic transducers, and ultrasonic fluid ejectors. He has authored over 600 publications and has been principal inventor or co-inventor of 107 US and international issued patents. He was awarded the Medal of the City of Bordeaux in 1983 for his contributions to Nondestructive Evaluation, the Distinguished Advisor Award of the School of Engineering at Stanford University in 1987, the Distinguished Lecturer Award of the IEEE UFFC society in 1999, a Stanford University Outstanding Inventor Award in 2004, Distinguished Alumnus Award of the School of Engineering of the American University of Beirut in 2005, Stanford Biodesign Certificate of Appreciation for commitment to educate, mentor and inspire Biodesgin Fellows, 2011, and 2011 recipient of IEEE Rayleigh award.

  • Mathew Kiang

    Mathew Kiang

    Assistant Professor of Epidemiology and Population Health (Epidemiology)

    BioI am an assistant professor in the Department of Epidemiology and Population Health. My research lies at the intersection of computational epidemiology and social epidemiology. Methodologically, my work revolves around combining disparate data sources in epidemiologically meaningful ways. For example, I work with individual-level, non-health data (e.g., GPS, accelerometer, and other sensor data from smartphones), traditional health data (e.g., survey, health systems, or death certificate data), and third-party data (e.g., cellphone providers or ad-tech data). To do this, I use a variety of methods such as joint Bayesian spatial models, traditional epidemiologic models, dynamical models, microsimulation, and demographic analysis. Substantively, my work focuses on socioeconomic and racial/ethnic inequities. For example, recently, my work has examined inequities in COVID-19 vaccine distribution, cause-specific excess mortality, and drug poisonings. I have an NIDA-funded R00 examining equitable ways to improve treatment for opioid use disorder across structurally disadvantaged groups and am Co-I on a NIDA-funded R21 examining ways to use novel data sources (such as social media) to predict surges in opioid-related mortality.

  • Juyong Brian Kim

    Juyong Brian Kim

    Assistant Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsThe lifetime risk of developing cardiovascular disease (CVD) is determined by the genetic makeup and exposure to modifiable risk factors. The Cardiovascular Link to Environmental ActioN (CLEAN) Lab is interested in understanding how various environmental pollutants (eg. tobacco, e-cigarettes, air pollution and wildfire) interact with genes to affect the transcriptome, epigenome, and eventually disease phenotype of CVD. The current focus is to investigate how different toxic exposures can adversely remodel the vascular wall leading to increased cardiac events. We intersect human genomic discoveries with animal models of disease, in-vitro and in-vivo systems of exposure, single-cell sequencing technologies to solve these questions. Additionally, we collaborate with various members of the Stanford community to develop biomarkers that will aid with detection and prognosis of CVD. We are passionate about the need to reduce the environmental effects on health through strong advocacy and outreach.
    (http://kimlab.stanford.edu)

  • Peter S. Kim

    Peter S. Kim

    Virginia and D. K. Ludwig Professor of Biochemistry

    Current Research and Scholarly InterestsWe are studying the mechanism of viral membrane fusion and its inhibition by drugs and antibodies. We use the HIV envelope protein (gp120/gp41) as a model system. Some of our studies are aimed at creating an HIV vaccine. We are also characterizing protein surfaces that are referred to as "non-druggable". These surfaces are defined empirically based on failure to identify small, drug-like molecules that bind to them with high affinity and specificity.

  • Seung K. Kim  M.D., Ph.D.

    Seung K. Kim M.D., Ph.D.

    KM Mulberry Professor, Professor of Developmental Biology, of Medicine (Endocrinology) and, by courtesy, of Pediatrics (Endocrinology)

    Current Research and Scholarly InterestsWe study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.

  • David Kingsley

    David Kingsley

    Rudy J. and Daphne Donohue Munzer Professor in the School of Medicine

    Current Research and Scholarly InterestsWe use mice, stickleback fish, and humans to study the molecular basis of evolution and common diseases. By combining genetics and genomics, we have identified key DNA changes that control bone formation, limb patterning, hair color, brain evolution, and susceptibility to arthritis, schizophrenia, and bipolar disorder. We find that the same genetic mechanisms are often used repeatedly in nature, providing new insights into the origin of key traits in many different species, including ourselves.

  • Amanda Kirane, MD, PhD, FACS, FSSO

    Amanda Kirane, MD, PhD, FACS, FSSO

    Assistant Professor of Surgery (General Surgery)

    BioDr. Kirane is a fellowship-trained, board-certified specialist in complex general surgical oncology. She is an Assistant Professor in the Department of Surgery, Section of Surgical Oncology, at Stanford University School of Medicine. Dr. Kirane serves as Director of Cutaneous Surgical Oncology at the Stanford Cancer Center and her clinical practice focuses on the diagnosis and treatment of melanoma and other skin cancers. She partners closely with patients and families to provide the most effective treatment approach possible. For each patient, she tailors an evidence-based, personalized care plan that is innovative, comprehensive, and compassionate.

    Dr. Kirane is Principal Investigator of multiple studies in melanoma and mechanisms of resistance to immunotherapy, with focus on myeloid biology. Her current interests include immune response and novel therapies in melanoma, predictive modeling of patient responses using organoid technology, and translational biomarker development. She has led research into immune therapy for earlier stage melanoma using regionally directed therapy to augment immune response in melanoma and trials in surgical care in melanoma.

    The National Institutes of Health, American Society of Clinical Oncology, the Melanoma Research Alliance, and others have funded her research. She has co-authored articles on her discoveries in the Journal of Clinical Investigation, Nature Communications, Nature Genetics, Cancer Research, Journal of Surgical Oncology, Annals of Surgery, Annals of Surgical Oncology, and elsewhere. Topics include intratumoral therapy, biomarker development, macrophage biology in melanoma and immunotheraputic resistance, and patient-derived organoid modeling. Dr. Kirane has presented updates on the management of melanoma and other cancers to her peers at meetings of the American College of Surgeons, Society of Surgical Oncology, and Society for Immunotherapy in Cancer.

    Dr. Kirane has earned awards for her achievements in clinical care, research, and scholarship. The Society for Immunotherapy of Cancer, Society of Surgical Oncology, Memorial Sloan Kettering Cancer Center, and other prestigious organizations have honored her work. She is a fellow of the American College of Surgeons (FACS) and Society of Surgical Oncology (FSSO). She is a member of the Society for Immunotherapy of Cancer, American Association of Cancer Research, Society for Melanoma Research, Connective Tissue Oncology Society, Association of Academic Surgeons, and Association of Women Surgeons.

    She volunteers her time and expertise on behalf of the Melanoma Research Foundation, members of her community in need, STEM programs for girls, and other initiatives. She also is fellowship trained in Physician Wellness and Wellbeing and teaches somatic technique, mindfulness-based stress reduction, meditation, and breathwork.

  • Varvara A. Kirchner

    Varvara A. Kirchner

    Associate Professor of Surgery (Abdominal Transplantation) and, by courtesy, of Pediatrics

    BioDr. Kirchner completed her medical school, surgical residency and multi-organ transplant fellowship in adult and pediatric liver, pancreas, kidney transplantation and total pancreatectomy with islet auto-transplantation at the University of Minnesota. She underwent further training in living donor liver transplantation and hepatobiliary surgery at the Asan Medical Center, Seoul, South Korea. Her clinical practice involves living and deceased donor liver and kidney transplantation in adult and pediatric patients as well as total pancreatectomy with islet auto-transplantation for patients with chronic and acute recurrent pancreatitis. She currently serves as Surgical Director of the Islet Cell Auto-Transplant at Stanford Children’s and Associate Director of the Living Donor Liver Transplant Program at the Division of Abdominal Transplantation. Dr. Kirchner’s research focuses on the biology of aging, cellular and solid organ transplantation. Her specific interests are in auto-islet transplantation, iPSC-derived hepatocyte therapies and liver regeneration. Dr. Kirchner's research on the impact of donor age on generation of iPSC-derived hepatocyte-like cells is supported by the NIA K08 Faculty Development Award. She is an active member of the American Society of Transplant Surgeons and the International Liver Transplantation Society.

  • Karla Kirkegaard

    Karla Kirkegaard

    Violetta L. Horton Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.

  • Peter K. Kitanidis

    Peter K. Kitanidis

    Professor of Civil and Environmental Engineering

    BioKitanidis develops methods for the solution of interpolation and inverse problems utilizing observations and mathematical models of flow and transport. He studies dilution and mixing of soluble substances in heterogeneous geologic formations, issues of scale in mass transport in heterogeneous porous media, and techniques to speed up the decay of pollutants in situ. He also develops methods for hydrologic forecasting and the optimization of sampling and control strategies.

  • Jonathan D Klein

    Jonathan D Klein

    Marron and Mary Elizabeth Kendrick Professor of Pediatrics

    Current Research and Scholarly InterestsMy studies address:
    1. Confidentiality and Access to Care studies of confidential time during well-visits and policy analyses addressing quality of care and health systems capacity for adolescents and young adults in the US and globally; and,
    2, Tobacco, nicotine, and second-hand smoke studies of primary care counseling to reduce nicotine addiction in adolescents and programs to engage medical specialty groups in secondhand smoke clinical and policy interventions.

  • Matthias Kling

    Matthias Kling

    Professor of Photon Science and, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsKling's research focuses on ultrafast electronics and nanophotonics employing ultrashort flashes of light from table-top and free-electron laser sources.

  • Joshua W. Knowles

    Joshua W. Knowles

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsGenetic basis of coronary disease
    Genetic basis of insulin resistance
    Familial Hypercholesterolemia (FH)

  • Juliet Klasing Knowles

    Juliet Klasing Knowles

    Assistant Professor of Neurology (Pediatric Neurology) and of Pediatrics

    Current Research and Scholarly InterestsThe Knowles lab studies how white matter structure changes in different forms of epilepsy, and how aberrant white matter structure, in turn, shapes neuronal network function. In mouse models, we use a variety of innovative tools including neurophysiology, quantitative EEG, behavior, histological measures of white matter structure and MR imaging. We also conduct clinical research to study white matter abnormalities in children with epilepsy.

  • Susan Knox

    Susan Knox

    Associate Professor of Radiation Oncology, Emerita

    Current Research and Scholarly InterestsOur interests include 1) study of the effect of radiation on regulatory cell subpopulations and co-stimulatory molecules, 2) use of radiation as an immune modulator for optimization of transplant regimens, 3) the role of radiation in tumor vaccine strategies, 4) study of new radiosensitizers and radioprotectors, and 5) discovery of new targeted therapies for the treatment of solid tumors.

  • Eric I. Knudsen

    Eric I. Knudsen

    Edward C. and Amy H. Sewall Professor in the School of Medicine, Emeritus

    Current Research and Scholarly InterestsCellular mechanisms of spatial attention and learning, studied in the central nervous system in birds, using behavioral, systems, cellular and molecular techniques.

  • Brian Knutson

    Brian Knutson

    Professor of Psychology

    Current Research and Scholarly InterestsMy lab and I seek to elucidate the neural basis of emotion (affective neuroscience), and explore implications for decision-making (neuroeconomics) and psychopathology (neurophenomics).

  • Brian Kobilka

    Brian Kobilka

    Hélène Irwin Fagan Chair of Cardiology

    Current Research and Scholarly InterestsStructure, function and physiology of adrenergic receptors.

  • Mykel Kochenderfer

    Mykel Kochenderfer

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Computer Science

    BioMykel Kochenderfer is Associate Professor of Aeronautics and Astronautics at Stanford University. Prior to joining the faculty, he was at MIT Lincoln Laboratory where he worked on airspace modeling and aircraft collision avoidance, with his early work leading to the establishment of the ACAS X program. He received a Ph.D. from the University of Edinburgh and B.S. and M.S. degrees in computer science from Stanford University. Prof. Kochenderfer is the director of the Stanford Intelligent Systems Laboratory (SISL), conducting research on advanced algorithms and analytical methods for the design of robust decision making systems. Of particular interest are systems for air traffic control, unmanned aircraft, and other aerospace applications where decisions must be made in uncertain, dynamic environments while maintaining safety and efficiency. Research at SISL focuses on efficient computational methods for deriving optimal decision strategies from high-dimensional, probabilistic problem representations. He is an author of "Decision Making under Uncertainty: Theory and Application" (2015), "Algorithms for Optimization" (2019), and "Algorithms for Decision Making" (2022), all from MIT Press. He is a third generation pilot.

  • Feliks Kogan

    Feliks Kogan

    Assistant Professor (Research) of Radiology (Musculoskeletal Imaging)

    Current Research and Scholarly InterestsMy research is focused on the development and clinical translation of novel imaging techniques geared toward early detection of musculoskeletal disease. Current projects include whole-joint molecular imaging of early disease with PET-MRI, imaging of early cartilage changes in Osteoarthritis (OA) with GagCEST, rapid knee imaging and simultaneous bilateral knee MRI.

  • Silvana Maria Konermann

    Silvana Maria Konermann

    Assistant Professor of Biochemistry

    BioSilvana is an Assistant Professor of Biochemistry at Stanford and Executive Director and Core Investigator at Arc Institute. Her research laboratory aims to understand the molecular pathways that drive the development of Alzheimer’s disease using next-generation functional genomics, with the long-term goal of developing rationally targeted therapeutics for neurodegenerative disorders. She received her Ph.D. in Neuroscience from MIT. Silvana’s pioneering work on tools to directly perturb the transcriptomic landscape of the cell using CRISPR has been recognized by her faculty appointment as a Chan Zuckerberg Biohub Investigator and Hanna Gray Fellow of the Howard Hughes Medical Institute.

  • Alexandra Konings

    Alexandra Konings

    Associate Professor of Earth System Science, Senior Fellow at the Woods Institute for the Environment and, by courtesy, of Geophysics

    BioAlexandra Konings leads the Remote Sensing Ecohydrology group, which studies interactions between the global carbon and water cycles. That is, her research studies how changes in hydrological conditions change ecosystems, and how this in turn feeds back to weather and climate. These interactions include studies of transpiration and root water uptake, photosynthesis, mortality, and fire processes, among others. To address these topics, the groups primarily uses the tools of model development and remote sensing (satellite) data, especially microwave remote sensing data of vegetation water content. Alex believes that a deep understanding of remote sensing techniques and how they can be used to create environmental datasets enables new opportunities for scientific insight and vice versa.

  • Eric Kool

    Eric Kool

    George A. and Hilda M. Daubert Professor of Chemistry

    Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
    • Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
    • Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation

  • Ron Kopito

    Ron Kopito

    Professor of Biology

    Current Research and Scholarly InterestsOur laboratory use state-of-the-art cell biological, genetic and systems-level approaches to understand how proteins are correctly synthesized, folded and assembled in the mammalian secretory pathway, how errors in this process are detected and how abnormal proteins are destroyed by the ubiquitin-proteasome system.

  • Roger Kornberg

    Roger Kornberg

    Mrs. George A. Winzer Professor of Medicine

    Current Research and Scholarly InterestsWe study the regulation of transcription, the first step in gene expression. The main lines of our work are 1) reconstitution of the process with more than 50 pure proteins and mechanistic analysis, 2) structure determination of the 50 protein complex at atomic resolution, and 3) studies of chromatin remodelling, required for transcription of the DNA template in living cells

  • Jeffrey R. Koseff

    Jeffrey R. Koseff

    Director, Sustainability Science and Practice, William Alden Campbell and Martha Campbell Professor in the School of Engineering, Professor of Oceans and Senior Fellow at the Woods Institute for the Environment

    BioJeff Koseff, founding co-director of the Stanford Woods Institute for the Environment, is an expert in the interdisciplinary domain of environmental fluid mechanics. His research falls in the interdisciplinary domain of environmental fluid mechanics and focuses on the interaction between physical and biological systems in natural aquatic environments. Current research activities are in the general area of environmental fluid mechanics and focus on: turbulence and internal wave dynamics in stratified flows, coral reef and sea-grass hydrodynamics, the role of natural systems in coastal protection, and flow through terrestrial and marine canopies. Most recently he has begun to focus on the interaction between gravity currents and breaking internal waves in the near-coastal environment, and the transport of marine microplastics. Koseff was formerly the Chair of Civil and Environmental Engineering, and the Senior Associate Dean of Engineering at Stanford, and has served on the Board of Governors of The Israel Institute of Technology, and has been a member of the Visiting Committees of the Civil and Environmental Engineering department at Carnegie-Mellon University, The Iowa Institute of Hydraulic Research, and Cornell University. He has also been a member of review committees for the College of Engineering at the University of Michigan, The WHOI-MIT Joint Program, and the University of Minnesota Institute on the Environment. He is a former member of the Independent Science Board of the Bay/Delta Authority. He was elected a Fellow of the American Physical Society in 2015, and received the Richard Lyman Award from Stanford University in the same year. In 2020 he was elected as a Fellow of the California Academy of Sciences. Koseff also served as the Faculty Athletics Representative to the Pac-12 and NCAA for Stanford until July 2024.

  • Nishita Kothary, MD

    Nishita Kothary, MD

    Professor of Radiology (Interventional Radiology)
    On Leave from 08/26/2024 To 12/20/2024

    Current Research and Scholarly InterestsInterventional Oncology: Percutaneous and transarterial interventions for diagnosis and treatment of primary and metastatic tumors (lung, liver and renal)


    Research Interest:
    Gastrointestinal and Hepatic Oncology

  • Fredric Kraemer

    Fredric Kraemer

    Gerald M. Reaven, MD, Professor of Endocrinology, Emeritus

    Current Research and Scholarly InterestsOur research interests are in the general area of cellular lipid and lipoprotein metabolism. The work is aimed primarily at understanding the mechanisms regulating cholesterol and triglyceride accumulation in cells. We utilize a variety of techniques from cell biology, biochemistry, and molecular biology.

  • Sheri Krams

    Sheri Krams

    Senior Associate Dean, Graduate Education and Postdoctoral Affairs and Professor of Surgery (Abdominal Transplantation)

    Current Research and Scholarly InterestsResearch Interests: 1) NK Cell Responses to EBV, 2) Exosomes in Immune Responses, 3) Plasmacytoid Dendritic Cell-Mediated Graft Prolongation, 4)Transplant Immunology

  • Elliot J. Krane

    Elliot J. Krane

    Professor of Anesthesiology, Perioperative and Pain Medicine (Pediatric Anesthesia) at the Stanford University Medical Center, Emeritus

    Current Research and Scholarly InterestsThe management of pain in children using intraspinal opioids, regional anesthetics, and novel analgesic agents; cerebral and osmolar complications of diabetic ketoacidosis in children.

  • Mark Krasnow

    Mark Krasnow

    Paul and Mildred Berg Professor

    Current Research and Scholarly Interests- Lung development and stem cells
    - Neural circuits of breathing and speaking
    - Lung diseases including lung cancer
    - New genetic model organism for biology, behavior, health and conservation

  • Alan M. Krensky, M.D.

    Alan M. Krensky, M.D.

    Shelagh Galligan Professor in the School of Medicine, Emeritus

    Current Research and Scholarly InterestsMechanisms and therapies for infection, cancer, autoimmunity and transplantation.

  • Thomas M. Krummel, MD, FACS/FAAP

    Thomas M. Krummel, MD, FACS/FAAP

    Emile Holman Professor, Emeritus

    Current Research and Scholarly InterestsSurgical Innovation, Simulation and Virtual Reality in Surgical Education, Fetal Healing-Cellular and Biochemical Mechanisms

  • Ellen Kuhl

    Ellen Kuhl

    Catherine Holman Johnson Director of Stanford Bio-X, Walter B Reinhold Professor in the School of Engineering, Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    Current Research and Scholarly Interestscomputaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation

  • Anshul Kundaje

    Anshul Kundaje

    Associate Professor of Genetics and of Computer Science

    Current Research and Scholarly InterestsWe develop statistical and machine learning frameworks to learn predictive, dynamic and causal models of gene regulation from heterogeneous functional genomics data.

  • Calvin Kuo

    Calvin Kuo

    Maureen Lyles D'Ambrogio Professor

    Current Research and Scholarly InterestsWe study cancer biology, intestinal stem cells (ISC), and angiogenesis. We use primary organoid cultures of diverse tissues and tumor biopsies for immunotherapy modeling, oncogene functional screening and stem cell biology. Angiogenesis projects include blood-brain barrier regulation, stroke therapeutics and anti-angiogenic cancer therapy. ISC projects apply organoid culture and ko mice to injury-inducible vs homeostatic stem cells and symmetric division mechanisms.

  • WILLIAM T. KUO, MD, FSIR, FCCP, FSVM, FACR, FCIRSE

    WILLIAM T. KUO, MD, FSIR, FCCP, FSVM, FACR, FCIRSE

    Professor of Radiology (Interventional Radiology)

    Current Research and Scholarly Interests1) LASER-ASSISTED AND COMPLEX IVC FILTER RETRIEVAL
    2) CATHETER-DIRECTED THERAPY FOR ACUTE PULMONARY EMBOLISM
    3) INTERNATIONAL PE REGISTRY
    4) IVC FILTER REGISTRY
    5) ENDOVASCULAR TREATMENT OF CAVAL AND DEEP VENOUS THROMBOSIS

  • Allison W. Kurian, M.D., M.Sc.

    Allison W. Kurian, M.D., M.Sc.

    Professor of Medicine (Oncology) and of Epidemiology and Population Health

    Current Research and Scholarly InterestsI aim to understand cancer burden and improve treatment quality at the population level. I have a strong focus on genetic risk assessment and precision oncology. I lead epidemiologic studies of cancer risk factors, clinical trials of novel approaches to cancer risk reduction, and decision analyses of strategies to optimize cancer outcomes.

  • Clete A. Kushida, MD, PhD

    Clete A. Kushida, MD, PhD

    Professor of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsDr. Kushida is a neurologist and sleep specialist who directs several NIH- and industry-sponsored research studies, focused on topics such as the physical features and neurocognitive changes associated with the obstructive sleep apnea syndrome, the epidemiology and treatment of restless legs syndrome/periodic limb movement disorder, primary care sleep education and training, and countermeasures for sleep loss.