Bio-X
Showing 41-60 of 70 Results
-
Aaron Lindenberg
Professor of Materials Science and Engineering and of Photon Science
BioLindenberg's research is focused on visualizing the ultrafast dynamics and atomic-scale structure of materials on femtosecond and picosecond time-scales. X-ray and electron scattering and spectroscopic techniques are combined with ultrafast optical techniques to provide a new way of taking snapshots of materials in motion. Current research is focused on the dynamics of phase transitions, ultrafast properties of nanoscale materials, and charge transport, with a focus on materials for information storage technologies, energy-related materials, and nanoscale optoelectronic devices.
-
Christian Linder
Professor of Civil and Environmental Engineering
BioChristian Linder is a Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering. Through the development of novel and efficient in-house computational methods based on a sound mathematical foundation, the research goal of the Computational Mechanics of Materials (CM2) Lab at Stanford University, led by Dr. Linder, is to understand micromechanically originated multi-scale and multi-physics mechanisms in solid materials undergoing large deformations and fracture. Applications include sustainable energy storage materials, flexible electronics, and granular materials.
Dr. Linder received his Ph.D. in Civil and Environmental Engineering from UC Berkeley, an MA in Mathematics from UC Berkeley, an M.Sc. in Computational Mechanics from the University of Stuttgart, and a Dipl.-Ing. degree in Civil Engineering from TU Graz. Before joining Stanford in 2013 he was a Junior-Professor of Micromechanics of Materials at the Applied Mechanics Institute of Stuttgart University where he also obtained his Habilitation in Mechanics. Notable honors include a Fulbright scholarship, the 2013 Richard-von-Mises Prize, the 2016 ICCM International Computational Method Young Investigator Award, the 2016 NSF CAREER Award, and the 2019 Presidential Early Career Award for Scientists and Engineers (PECASE). -
Scott W Linderman
Assistant Professor of Statistics and, by courtesy, of Computer Science and of Electrical Engineering
BioScott is an Assistant Professor of Statistics and, by courtesy, Electrical Engineering and Computer Science at Stanford University. He is also an Institute Scholar in the Wu Tsai Neurosciences Institute and a member of Stanford Bio-X and the Stanford AI Lab. His lab works at the intersection of machine learning and computational neuroscience, developing statistical methods to analyze large scale neural data. Previously, Scott was a postdoctoral fellow with Liam Paninski and David Blei at Columbia University, and he completed his PhD in Computer Science at Harvard University with Ryan Adams and Leslie Valiant. He obtained his undergraduate degree in Electrical and Computer Engineering from Cornell University and spent three years as a software engineer at Microsoft before graduate school.
-
Bruce Ling
Assistant Professor (Research) of Surgery (Pediatric Surgery)
Current Research and Scholarly InterestsA significant focus of my career is the use of AI to decode real-world datasets of electronic health records, high-resolution LCMS-based liquid/tissue biopsy proteomics/metabolomics, and multiple modality medical imaging. For population health management, we use tens of millions of real-world state-wide EMRs to develop risk surveillance systems that forecast aspects like disease progression, resource utilization, and mortality across a diverse patient demographic. This prompts timely clinical actions by simplifying intervention orders and crafting care strategies tailored to address modifiable patient risk components. For first-in-class molecular diagnostics, we have developed unique LCMS based multi-omic approaches that allow the simultaneous absolute quantification of thousands of metabolites and proteins in blood and FFPE pathological slides to predict clinical outcomes. Our collaborations with key opinion leaders in pregnancy disorder and pediatric diseases, such as Kawasaki disease, have been productive and have helped to fill critical unmet medical needs. For computer-aided pathology (CAP) and computer-aided medical imaging analytics (CAMIA), we have developed deep learning-based computational solutions to decode clinical outcome-correlating signals in pathological whole slide images and echocardiograms. Our multi-modality and multi-omics approaches synergize to promise the next generation of disease diagnostics and risk stratification solutions.
-
Joseph (Joe) Lipsick
Professor of Pathology and of Genetics
Current Research and Scholarly InterestsFunction and evolution of the Myb oncogene family; function and evolution of E2F transcriptional regulators and RB tumor suppressors; epigenetic regulation of chromatin and chromosomes; cancer genetics.
-
C. Karen Liu
Professor of Computer Science
BioC. Karen Liu is an associate professor in the Computer Science Department at Stanford University. Prior to joining Stanford, Liu was a faculty member at the School of Interactive Computing at Georgia Tech. She received her Ph.D. degree in Computer Science from the University of Washington. Liu's research interests are in computer graphics and robotics, including physics-based animation, character animation, optimal control, reinforcement learning, and computational biomechanics. She developed computational approaches to modeling realistic and natural human movements, learning complex control policies for humanoids and assistive robots, and advancing fundamental numerical simulation and optimal control algorithms. The algorithms and software developed in her lab have fostered interdisciplinary collaboration with researchers in robotics, computer graphics, mechanical engineering, biomechanics, neuroscience, and biology. Liu received a National Science Foundation CAREER Award, an Alfred P. Sloan Fellowship, and was named Young Innovators Under 35 by Technology Review. In 2012, Liu received the ACM SIGGRAPH Significant New Researcher Award for her contribution in the field of computer graphics.
-
Wendy Liu, MD, PhD
Assistant Professor of Ophthalmology
Current Research and Scholarly InterestsDr. Liu's research interests include the role of mechanosensation in the eye as it relates to the pathophysiology of glaucoma, with the goal of finding new druggable targets in glaucoma treatment.
-
Wu Liu
Associate Professor of Radiation Oncology (Radiation Physics)
Current Research and Scholarly InterestsTheranostic nanoparticles for radiosensitization and medical imaging. Novel treatment technique for ocular disease radiotherapy. Radio-neuromodulation using focused kV x-rays. Use artificial intelligence in image guided radiotherapy and medical image analysis. Ultrasound parametric imaging.
-
James Lock
Eric Rothenberg, MD Professor and Professor, by courtesy, of Pediatrics
Current Research and Scholarly InterestsJames Lock, MD, Ph.D. is Professor of Child Psychiatry and Pediatrics in the Department of Psychiatry and Behavioral Sciences at Stanford University School of Medicine where he has taught since 1993. He is board certified in adult as well as child and adolescent psychiatry. He directs the eating disorder program in Child Psychiatry and is active in treatment research for children and adolescents with eating disorders.
-
Andreas Loening
Assistant Professor of Radiology (Body MRI)
Current Research and Scholarly InterestsMy lab focuses on expanding the capability of MR and PET/MR as it relates to applications in body imaging. Clinical research aims include the application of new or improved MR sequences to increase the speed, robustness, and diagnostic capability of body MR. Translation research aims include exploring new MR contrast mechanisms and contrast agents, such as for the stratification of cancer within the prostate and the evaluation of the lymphatic system.
-
Kyle Loh
Assistant Professor of Developmental Biology (Stem Cell)
BioHow the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human embryonic stem cells develop into over twenty different human cell-types. This roadmap allowed us to generate enriched populations of human liver, bone, heart and blood vessel precursors in a Petri dish from embryonic stem cells. Each of these tissue precursors could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to our interests in developmental and stem cell biology, we also interested in discovering the entry receptors and target cells of deadly biosafety level 4 viruses, together with our collaborators.
Kyle attended the County College of Morris and Rutgers University, and received his Ph.D. from Stanford University (working with Irving Weissman), with fellowships from the Hertz Foundation, National Science Foundation and Davidson Institute for Talent Development. He then continued as a Siebel Investigator, and later, as an Assistant Professor and The Anthony DiGenova Endowed Faculty Scholar at Stanford, where he is jointly appointed in the Department of Developmental Biology and Institute for Stem Cell Biology & Regenerative Medicine. Kyle is a Packard Fellow, Pew Scholar, Human Frontier Science Program Young Investigator and Baxter Foundation Faculty Scholar, and his research has been recognized by the NIH Director's Early Independence Award, Forbes 30 Under 30, Harold Weintraub Graduate Award, Hertz Foundation Thesis Prize and A*STAR Investigatorship. -
Jonathan Z. Long
Assistant Professor of Pathology
BioDr. Jonathan Long is an Assistant Professor of Pathology and an Institute Scholar of Stanford ChEM-H (Chemistry, Engineering & Medicine for Human Health). Prior to arriving to Stanford in 2018, Dr. Long completed his Ph.D. in Chemistry at Scripps Research his postdoctoral work at Harvard Medical School/Dana-Farber Cancer Institute. His contributions in the areas of biochemistry and molecular metabolism have been recognized by numerous awards from the National Institutes of Health and the American Diabetes Association. At Stanford, the Long laboratory studies signaling pathways in mammalian energy metabolism. The long-term goal of this work is to discover new molecules and pathways that can be translated into therapeutic opportunities for obesity, metabolic disease, and other age-associated chronic diseases.
-
Sharon R. Long
William C. Steere, Jr. - Pfizer Inc. Professor of Biological Sciences and Professor, by courtesy, of Biochemistry
Current Research and Scholarly InterestsBiochemistry, genetics and cell biology of plant-bacterial symbiosis
-
Dr. Michael T. Longaker
Deane P. and Louise Mitchell Professor in the School of Medicine and Professor, by courtesy, of Materials Science and Engineering
Current Research and Scholarly InterestsWe have six main areas of current interest: 1) Cranial Suture Developmental Biology, 2) Distraction Osteogenesis, 3) Fibroblast heterogeneity and fibrosis repair, 4) Scarless Fetal Wound Healing, 5) Skeletal Stem Cells, 6) Novel Gene and Stem Cell Therapeutic Approaches.
-
Frank M. Longo, MD, PhD
George E. and Lucy Becker Professor of Medicine and Professor, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsClinical interests include Alzheimer's disease and Huntington's disease and the development of effective therapeutics for these disorders. Laboratory interests encompass the elucidation of signaling mechanisms relevant to neurodegenerative disorders and the development of novel small molecule approaches for the treatment of neurodegenerative and other neurological disorders.
-
Billy W Loo, Jr, MD PhD FASTRO FACR
Professor of Radiation Oncology (Radiation Therapy)
Current Research and Scholarly InterestsMy clinical specialty is radiation treatment of thoracic cancers.
My research is on developing next-generation ultra-rapid radiation therapy technology (PHASER) and studying the radiobiological effects of FLASH treatment.
My clinical research is on advanced 4-D image-guided radiation therapy and stereotactic ablative radiotherapy (SABR), and functional and metabolic imaging and imaging biomarkers. -
Jaime Lopez, MD
Professor of Neurology and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsMy clinical interests are in the areas of Intraoperative Neurophysiologic Monitoring (IOM), clinical neurophysiology, electromyopgraphy and in the use of botulinum toxins in the treatment of neurologic disorders. Our IOM groups research is in the development of new and innovative techniques for monitoring the nervous system during surgical and endovascular procedures and how these alter surgical management and patient outcomes. I am also active in formulating national IOM practice guidelines.
-
H. Peter Lorenz, MD
Professor of Surgery (Plastic and Reconstructive Surgery)
Current Research and Scholarly InterestsWe have three areas of current investigation:
1) Scarless skin wound healing biology
2) Dot stem cell tissue regeneration biology
3) Novel stem cell therapy for tissue engineering -
Christopher Lowe
Professor of Biology
Current Research and Scholarly InterestsEvolution and development, specifically the evolution of the deuterostomes