Bio-X


Showing 21-30 of 56 Results

  • Mark Pegram

    Mark Pegram

    Susy Yuan-Huey Hung Professor

    Current Research and Scholarly InterestsMolecular mechanisms of targeted therapy resistance in breast and other cancers

  • Norbert Pelc

    Norbert Pelc

    Boston Scientific Applied Biomedical Engineering Professor and Professor of Radiology, Emeritus

    Current Research and Scholarly InterestsBroadly, Dr. Pelc is interested in the physics, engineering and mathematics of medical imaging, especially computed tomography, digital x-ray imaging, magnetic resonance imaging, and hybrid multimodality systems. His current research is concentrated in the development of computed tomography systems with higher image quality and dose efficiency, in the characterization of system performance, and in the development and validation of new clinical applications.

  • Gary Peltz

    Gary Peltz

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsThe laboratory develops and uses state of the art genomic methods to identify genetic factors affecting disease susceptibility, and to translate these findings into new treatments. We have developed a more efficient method for performing mouse genetic analysis, which has been used to analyze the genetic basis for 16 different biomedical traits. We are developing novel methods, and have developed a novel experimental platform that replaces mouse liver with functioning human liver tissue.

  • Jon-Paul Pepper, MD

    Jon-Paul Pepper, MD

    Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    Current Research and Scholarly InterestsFacial paralysis is a debilitating condition that affects thousands of people. Despite excellent surgical technique, we are currently limited by the regenerative capacity of the body. The mission of our research is to identify new treatments that improve current facial paralysis treatments. We do this by exploring the regenerative cues that the body uses to restore tissue after nerve injury, in particular through pathways of neurogenesis and nerve repair in small mammals.

  • Claudia Katharina Petritsch

    Claudia Katharina Petritsch

    Associate Professor (Research) of Neurosurgery

    Current Research and Scholarly InterestsThe Petritsch lab broadly investigates underlying causes for the intra-tumoral heterogeneity and immune suppression in brain tumors from a neuro-developmental perspective. Defective cell fate decisions fuel the intra-humoral heterogeneity and plasticity in human brain tumors and may contribute to immune suppression. We use patient-derived models as avatars to study how brain cells control the fate of their progeny, whereby we unravel novel points of vulnerabilities in brain tumor cells.

  • Dmitri Petrov

    Dmitri Petrov

    Michelle and Kevin Douglas Professor in the School of Humanities and Sciences

    Current Research and Scholarly InterestsEvolution of genomes and population genomics of adaptation and variation

  • Suzanne Pfeffer

    Suzanne Pfeffer

    Emma Pfeiffer Merner Professor of Medical Sciences

    Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.

  • Adolf Pfefferbaum

    Adolf Pfefferbaum

    Professor of Psychiatry and Behavioral Sciences, Emeritus

    Current Research and Scholarly InterestsDevelopment and application of magnetic resonance imaging approaches for in vivo studies of human and animal brain integrity in neurodegenerative conditions, including alcoholism, HIV infection, Alzheimer's disease, and normal aging

  • Harold Westley Phillips

    Harold Westley Phillips

    Assistant Professor of Neurosurgery (Pediatric Neurosurgery)

    BioH. Westley Phillips, MD is an Assistant Professor of Neurosurgery at Stanford University where he is a neurosurgeon-scientist specializing in pediatric neurosurgery with a special interest in epilepsy. Dr. Phillips received his undergraduate degree at Yale University where he was a member of the Varsity Football Team and received a Fulbright Scholarship. He completed an MD at the Perelman School of Medicine at the University of Pennsylvania, graduating with a certificate of distinction in the Clinical Neuroscience Training Program. He completed neurosurgical residency at UCLA where he received 2 years of NIH funding to investigate the genetic underpinnings of epilepsy. He received fellowship training in pediatric epilepsy surgery and genetics research at Boston Children’s Hospital as well as pediatric neurosurgery at the University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh before his arrival at Stanford. At Stanford, Dr. Phillips leads a molecular genetics laboratory and has a particular interest in defining and further understanding somatic mosaicism and its role in epileptogenesis. He has published manuscripts in leading academic journals including Nature: Genetics, JAMA Neurology, Journal of Neuroscience, Scientific Reports, Epilepsia and Neurology. He is dedicated to improving the treatment and outcomes for children with drug resistant epilepsy through innovative research and cutting-edge surgical techniques.

  • Piero Pianetta

    Piero Pianetta

    Professor (Research) of Photon Science and of Electrical Engineering

    BioPianetta's research is directed towards understanding how the atomic and electronic structure of semiconductor interfaces impacts device technology pertaining to advanced semiconductors and photocathodes. His research includes the development of new analytical tools for these studies based on the use of synchrotron radiation. These include the development of ultrasensitive methods to analyze trace impurities on the surface of silicon wafers at levels as low as 1e-6 monolayer (~1e8 atoms/cm2) and the use of various photoelectron spectroscopies (X-ray photoemission, NEXAFS, X-ray standing waves and photoelectron diffraction) to determine the bonding and atomic structure at the interface between silicon and different passivating layers. Recent projects include the development of high resolution (~30nm) x-ray spectromicroscopy with applications to energy materials such as Li batteries.