Bio-X


Showing 11-20 of 114 Results

  • Alberto Salleo

    Alberto Salleo

    Hong Seh and Vivian W. M. Lim Professor

    Current Research and Scholarly InterestsNovel materials and processing techniques for large-area and flexible electronic/photonic devices. Polymeric materials for electronics, bioelectronics, and biosensors. Electrochemical devices for neuromorphic computing. Defects and structure/property studies of polymeric semiconductors, nano-structured and amorphous materials in thin films. Advanced characterization techniques for soft matter.

  • Julia Salzman

    Julia Salzman

    Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology

    Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes

  • Peter L. Santa Maria, MBBS, PhD

    Peter L. Santa Maria, MBBS, PhD

    Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Bioengineering
    On Partial Leave from 08/01/2023 To 07/14/2024

    Current Research and Scholarly InterestsWe study chronic suppurative otitis media, a chronic biofilm infection of the middle ear predominantly involving pseudomonas and staph aureus. We are investigating mechanisms of sensory hearing loss, host microbe interactions and trialling novel therapeutics.

    Our work in tympanic membrane regeneration has entered clinical trials.

    Novel treatments for wound healing in intra oral wounds with potential applications to prevent post tonsillectomy wound healing and oral mucositis.

  • Juan G. Santiago

    Juan G. Santiago

    Charles Lee Powell Foundation Professor

    Current Research and Scholarly Interestshttp://microfluidics.stanford.edu/Projects/Projects.html

  • Serena Sanulli

    Serena Sanulli

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsWe study the organizing principles of the genome and how these principles regulate cell identity and developmental switches. We combine Biochemistry and Biophysical methods such as NMR and Hydrogen-Deuterium Exchange-MS with Cell Biology, and Genetics to explore genome organization across length and time scales and understand how cells leverage the diverse biophysical properties of chromatin to regulate genome function.

  • Robert Sapolsky

    Robert Sapolsky

    John A. and Cynthia Fry Gunn Professor, Professor of Biology, of Neurology and of Neurosurgery

    Current Research and Scholarly InterestsNeuron death, stress, gene therapy

  • Kavita Sarin, MD, PhD

    Kavita Sarin, MD, PhD

    Associate Professor of Dermatology

    Current Research and Scholarly InterestsMy research encompasses two main areas: 1) Using next-generation RNA, whole genome, and exome sequencing, we are investigating the genetic alterations involved in skin cancer progression, response to therapy, and other clinical outcomes and 2) We are developing and implementing genome-wide genetic risk prediction assessments for skin cancer into clinical use and studying the impact of this information on patient care.

  • Peter Sarnow

    Peter Sarnow

    Burt and Marion Avery Professor of Immunology

    Current Research and Scholarly InterestsOur laboratory studies virus-host interactions with an emphasis microRNA-mediated gene regulation and on translational control. The mechanism by which a liver-specific microRNA regulates hepatitis C virus genome replication is under intense scrutiny. In addition, the mechanism of internal ribosome entry in certain cellular and viral mRNAs and its biological role in growth and development is being investigated.

  • Ansuman Satpathy

    Ansuman Satpathy

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsOur lab works at the interface of immunology, cancer biology, and genomics to study cellular and molecular mechanisms of the immune response to cancer. In particular, we are leveraging high-throughput genomic technologies to understand the dynamics of the tumor-specific T cell response to cancer antigens and immunotherapies (checkpoint blockade, CAR-T cells, and others). We are also interested in understanding the impact of immuno-editing on the heterogeneity and clonal evolution of cancer.

    We previously developed genome sequencing technologies that enable epigenetic studies in primary human immune cells from patients: 1) 3D enhancer-promoter interaction profiling (Nat Genet, 2017), 2) paired epigenome and T cell receptor (TCR) profiling in single cells (Nat Med, 2018), 3) paired epigenome and CRISPR profiling in single cells (Cell, 2019), and high-throughput single-cell ATAC-seq in droplets (Nature Biotech, 2019). We used these tools to study fundamental principles of the T cell response to cancer immunotherapy (PD-1 blockade) directly in cancer patient samples (Nature Biotech, 2019; Nat Med, 2019).

  • Elizabeth Sattely

    Elizabeth Sattely

    Associate Professor of Chemical Engineering

    BioPlants have an extraordinary capacity to harvest atmospheric CO2 and sunlight for the production of energy-rich biopolymers, clinically used drugs, and other biologically active small molecules. The metabolic pathways that produce these compounds are key to developing sustainable biofuel feedstocks, protecting crops from pathogens, and discovering new natural-product based therapeutics for human disease. These applications motivate us to find new ways to elucidate and engineer plant metabolism. We use a multidisciplinary approach combining chemistry, enzymology, genetics, and metabolomics to tackle problems that include new methods for delignification of lignocellulosic biomass and the engineering of plant antibiotic biosynthesis.