Bio-X


Showing 991-1,000 of 1,058 Results

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Robert Waymouth

    Robert Waymouth

    Robert Eckles Swain Professor of Chemistry and Professor, by courtesy, of Chemical Engineering

    BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including bioactive polymers, synthetic fuels, and sustainable plastics. In one such breakthrough, Professor Waymouth and Professor Wender developed a new class of gene delivery agents.

    Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.

    Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. In collaboration with Dr. James Hedrick of IBM, we have developed a platform of highly active organic catalysts and continuous flow reactors that provide access to polymer architectures that are difficult to access by conventional approaches.

    The Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver genes, drugs and probes into cells and live animals. These advances led to the joint discovery with the Wender group of a general, safe, and remarkably effective concept for RNA delivery based on a new class of synthetic cationic materials, Charge-Altering Releasable Transporters (CARTs). This technology has been shown to be effective for mRNA based cancer vaccines.

  • Katja Gabriele Weinacht, MD, PhD

    Katja Gabriele Weinacht, MD, PhD

    Assistant Professor of Pediatrics (Stem Cell Transplantation and Regenerative Medicine)

    Current Research and Scholarly InterestsPediatric Hematopoietic Stem Cell Transplantation
    DiGeorge Syndrome
    Genetic Immune Diseases
    Immune Dysregulation

  • William Weis

    William Weis

    Member, Bio-X

    Current Research and Scholarly InterestsOur laboratory studies molecular interactions that underlie the establishment and maintenance of cell and tissue structure. Our principal areas of interest are the architecture and dynamics of intercellular adhesion junctions, signaling pathways that govern cell fate determination, and determinants of cell polarity. Our overall approach is to reconstitute macromolecular assemblies with purified components in order to analyze them using biochemical, biophysical and structural methods.

  • Irving Weissman

    Irving Weissman

    Virginia & D.K. Ludwig Professor of Clinical Investigation in Cancer Research, Professor of Pathology, and of Developmental Biology

    Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis; order of events from hematopoietic stem cells [HSC] to AML leukemia stem cells and blood diseases, and parallels in other tissues; discovery of tumor and pathogenic cell 'don't eat me' and 'eat me' signals, and translation into therapeutics.

  • Itschak Weissman

    Itschak Weissman

    Professor of Electrical Engineering

    BioTsachy's research focuses on Information Theory, Data Compression and Communications, Statistical Signal Processing, Machine Learning, the interplay between them, and their applications, with recent focus on applications to genomic data compression and processing. He is inventor of several patents and involved in several companies as member of the technical board. IEEE fellow, he serves on the board of governors of the information theory society as well as the editorial boards of the Transactions on Information Theory and Foundations and Trends in Communications and Information Theory. He is founding Director of the Stanford Compression Forum.

  • Paula V. Welander

    Paula V. Welander

    Associate Dean for Integrative Initiatives in DEI, Associate Professor of Environmental Earth System Science and, by courtesy, of Biology and of Earth and Planetary Sciences

    Current Research and Scholarly InterestsBiosynthesis of lipid biomarkers in modern microbes; molecular geomicrobiology; microbial physiology

  • Paul Wender

    Paul Wender

    Francis W. Bergstrom Professor and Professor, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsMolecular imaging, therapeutics, drug delivery, drug mode of action, synthesis

  • Gerlinde Wernig

    Gerlinde Wernig

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsFibrotic diseases kill more people than cancer in this country and worldwide. We believe that scar-forming cells called fibroblasts are at the core of the fibrotic response in parenchymal organ fibrosis in the lung, liver, skin, bone marrow and tumor stroma. At the cellular level we think of fibrosis as a step wise process which implicates inflammation and fibrosis. We seek to identify new effective immune therapy targets to treat fibrotic diseases.