Bio-X


Showing 201-210 of 1,062 Results

  • Martha S. Cyert

    Martha S. Cyert

    Dr. Nancy Chang Professor

    Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.

  • Agnieszka Czechowicz, MD, PhD

    Agnieszka Czechowicz, MD, PhD

    Assistant Professor of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsDr. Czechowicz’s research is aimed at understanding how hematopoietic stem cells interact with their microenvironment in order to subsequently modulate these interactions to improve bone marrow transplantation and unlock biological secrets that further enable regenerative medicine broadly. This work can be applied across a variety of disease states ranging from rare genetic diseases, autoimmune diseases, solid organ transplantation, microbiome-augmentation and cancer.

  • Jeremy Dahl

    Jeremy Dahl

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Heike Daldrup-Link

    Heike Daldrup-Link

    Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.

  • Ronald L. Dalman MD

    Ronald L. Dalman MD

    Dr. Walter C. Chidester Professor

    Current Research and Scholarly InterestsVascular biology, arterial remodeling, aneurysm development; innovative treatment strategies for AAA, animal models of arterial disease, arterial remodeling and flow changes in spinal cord injury, genetic regulation of arterial aneurysm formation

  • Roxana Daneshjou, MD, PhD

    Roxana Daneshjou, MD, PhD

    Assistant Professor of Biomedical Data Science and of Dermatology

    BioDr. Daneshjou studied Bioengineering at Rice University before matriculating to Stanford School of Medicine where she completed her MD and a PhD in Genetics with Dr. Russ Altman as part of the medical scientist training program. She completed dermatology residency at Stanford as part of the research track and completed a postdoc in Biomedical Data Science with Dr. James Zou. She currently is the assistant director of the Center of Excellence for Precision Heath & Pharmacogenomics, director of informatics for the Stanford Skin Innovation and Interventional Research Group (SIIRG), a founding member of the Translational AI in Dermatology (TRAIND) group, and a faculty affiliate of Human-centered Artificial Intelligence (HAI) and the AI in Medicine and Imaging (AIMI) centers.

  • Bruce Daniel

    Bruce Daniel

    Professor of Radiology (Body Imaging) and, by courtesy, of Bioengineering

    Current Research and Scholarly Interests1. MRI of Breast Cancer, particularly new techniques. Currently being explored are techniques including ultra high spatial resolution MRI and contrast-agent-free detection of breast tumors.

    2. MRI-guided interventions, especially MRI-compatible remote manipulation and haptics

    3. Medical Mixed Reality. Currently being explored are methods of fusing patients and their images to potentially improve breast conserving surgery, and other conditions.

  • Kyle Gabriel Daniels

    Kyle Gabriel Daniels

    Assistant Professor of Genetics

    BioKyle obtained his BS in Biochemistry from the University of Maryland College Park in 2010, conducting undergraduate research with Dr. Dorothy Beckett, PhD. He obtained his PhD in Biochemistry with a certificate in Structural Biology and Biophysics. His dissertation is titled "Kinetics of Coupled Binding and Conformational Change in Proteins and RNA" and was completed in the laboratory of Dr. Terrence G. Oas, PhD. Kyle performed postdoctoral training with Dr. Wendell A. Lim, PhD at UCSF studying how CAR T cell phenotype is encoded by modular signaling motifs within chimeric antigen receptors.

    Kyle's lab is interested in harnessing the principles of modularity to engineer receptors and gene circuits to control cell functions.

    The lab will use synthetic biology, medium- and high-throughput screens, and machine learning to: (1) Engineer immune cells to achieve robust and durable responses against various cancer targets, (2) Coordinate behavior of multiple engineered cell types in cancer, autoimmune disease, and payload delivery, (3) Control survival, proliferation, and differentiation of hematopoietic stem cells (HSCs) and immune cells, and (4) Explore principles of modularity related to engineering receptors and gene circuits in mammalian cells.