Bio-X
Showing 801-820 of 1,053 Results
-
Fatima Rodriguez
Associate Professor of Medicine (Cardiovascular Medicine)
BioFatima Rodriguez, MD, MPH is an Associate Professor in Cardiovascular Medicine and (by courtesy) the Stanford Prevention Research Center. Dr. Rodriguez earned her medical degree from Harvard Medical School and her MPH from the Harvard School of Public Health. She then completed internal medicine residency at Brigham and Women’s Hospital and fellowship in cardiovascular medicine at Stanford University. She currently serves as the Section Chief of Preventive Cardiology. Dr. Rodriguez specializes in cardiovascular disease prevention, inherited lipid disorders, and cardiovascular risk assessment in high-risk populations.
Dr. Rodriguez’s research includes a range of topics around racial, ethnic, and gender disparities in cardiovascular disease prevention, developing novel interventions to address disparities, and opportunistic screening of coronary artery disease. -
Kacper Rogala
Assistant Professor of Structural Biology and of Chemical and Systems Biology
Current Research and Scholarly InterestsOur team is fascinated by how cells make growth decisions — to grow or not to grow. In order to grow, cells require nutrients, and we are unraveling how cells use specialized protein sensors and transporters to sense and traffic nutrients in between various compartments. We use approaches from structural biology, chemical biology, biophysics, biochemistry, and cell biology — to reveal the mechanisms of basic biological processes, and we develop chemical probes that modulate them.
-
Angela Rogers
Associate Professor of Medicine (Pulmonary and Critical Care)
Current Research and Scholarly InterestsWe use genetics and genomics methodologies to identify novel ARDS pathobiology; we hope that this will enable identification of novel biomarkers, phenotypes, and treatments for the disease. We are building a plasma biobank of critically ill patients at Stanford, with a particular focus on metabolic changes in critical illness.
-
Rajat Rohatgi
Professor of Biochemistry and of Medicine (Oncology)
Current Research and Scholarly Intereststhe overall goal of my laboratory is to uncover new regulatory mechanisms in signaling systems, to understand how these mechanisms are damaged in disease states, and to devise new strategies to repair their function.
-
Maria Grazia Roncarolo
George D. Smith Professor of Stem Cell and Regenerative Medicine, Emerita
Current Research and Scholarly InterestsResearch Interests
Immunetolerance: Mechanisms underlying T-cell tolerance, induction of T-cell anergy and regulatory T cells; Immunomodulation: mAbs, proteins and low molecular weight compounds which can modulate T-cell activation; Primary immunodeficiencies: Characterization of molecular and immunological defects; Gene therapy: Gene transduction of hematopoietic cells for gene therapy in primary immunodeficiencies and metabolic diseases; Hematopoiesis: Mechanisms underlying growth and differentiation of hematopoietic stem cells; Transplantation: Immune reconstitution and T-cell tolerance after allogenic stem cell transplantation; Cytokines/Cytokine receptors: Role in regulation of immune and inflammatory responses
Clinical Interests
Primary Immunodeficiencies
Monogenic Autoimmune Disorders
Allogenic Bone Marrow Transplantation
Gene Therapy Clinical Trials
Cell Therapy Clinical Trials
Clinical Trials in Autoimmune Diseases and Organ Transplantation
Clinical Trials in Hemoglobinopathies -
Lisa Goldman Rosas
Assistant Professor (Research) of Epidemiology and Population Health, of Medicine (Primary Care and Population Health) and, by courtesy, of Pediatrics
BioLisa Goldman Rosas, PhD MPH is an Assistant Professor in the Department of Epidemiology and Population Health and the Department of Medicine, Division of Primary Care and Population Health at Stanford School of Medicine. An epidemiologist by training, Dr. Goldman Rosas’ research focuses on addressing disparities in chronic diseases such as diabetes, heart disease, depression, and cancer among racial/ethnic minority families. This research features rigorous quantitative and qualitative methodologies, participatory qualitative approaches, and shared leadership with patient and community partners. She is passionate about integrating patients, caregivers, community organizations, and other key stakeholders in the research process in order to affect the greatest improvements in health and well-being. As a reflection of this passion, Dr. Goldman Rosas serves as the Faculty Director for the School of Medicine Office of Community Engagement, Co-Director of Community-Engaged Research for the Office of Cancer Health Equity, and Director of the Outreach, Recruitment and Engagement Core for the Alzheimer's Disease Research Center. In these roles, she supports other faculty and patient and community partners to develop sustainable and meaningful partnerships to support transformative research. In addition to research, she teaches at the undergraduate and graduate levels and has a special focus on increasing diversity in biomedical research.
-
Jessica Rose
Professor of Orthopaedic Surgery
Current Research and Scholarly InterestsDr. Rose's research investigates neuromuscular mechanisms underlying cerebral palsy (CP) and early brain and motor development in preterm children. Research examines gait biomechanics as well as neonatal brain microstructure on DTI, physiology and motor function in CP. Dr. Rose served on NIH Taskforce on Childhood Motor Disorders, AACPDM Research Committee, NIH Steering Committee on CDE for CP neuroimaging diagnostics, BOD of SBMT and serves on the IAACD Research Committee.
-
Glenn Rosen
Associate Professor of Medicine (Pulmonary and Critical Care Medicine), Emeritus
Current Research and Scholarly InterestsOur laboratory examines apoptotic and cell signaling pathways in cancer and lung disease. We are studying signaling pathways that regulate oxidative stress responses and cancer cell growth. Part of these studies focus on analysis of non-canonical transcription regulatory functions of the TERC and Tert components of telomerase in lung disease and cancer.
-
Michael J Rosen, MD, MSCI
Stanford University Endowed Professor for Pediatric IBD and Celiac Disease
BioI am a pediatric gastroenterologist and physician scientist, who has been devoted to inflammatory bowel disease (IBD) research since beginning medical training over 20 years ago. I am also Director of the Stanford Center for Pediatric IBD and Celiac Disease. I have expertise crossing mucosal immunology and epithelial biology, formal training and experience in clinical and translational investigation with human biospecimens, and direct insight regarding the important clinical challenges caring for children with complicated IBD. My translational research program focuses on how the immune system regulates epithelial function in chronic intestinal inflammation as it relates to IBD. My clinical research program has focused on optimization of anti-TNF therapy in pediatric IBD, and in particular acute severe ulcerative colitis (ASUC). My laboratory has demonstrated a protective role for IL33, a cytokine that induces type 2 cytokines from T cells an innate lymphoid cells (ILCs), in acute oxazolone colitis through preservation of epithelial goblet cells and barrier function. In line with this finding, we have also shown in a large prospective patient cohort that mucosal expression of type 2 and type 17 immune response genes distinguishes ulcerative colitis (UC) from colon-only Crohn’s disease, and that type 2 gene expression is associated with superior clinical outcome in pediatric UC. We have now developed an organoid-immune cell in vitro culture system to demonstrate the ILC2-dependent mechanism through which IL33 induces goblet cell differentiation in the intestinal epithelium. I led the multicenter study Anti-TNF for Refractory Colitis in Hospitalized Children (ARCH) Study, which aims to establish determinants of anti-TNF response in pediatric ASUC and currently Co-Chair the Crohn's & Colitis Foundations Cohort for Pediatric Translational and Clinical Research in IBD (CAPTURE IBD) and PRO-KIIDS Pediatric IBD clinical research network.
-
Noah Rosenberg
Stanford Professor of Population Genetics and Society
Current Research and Scholarly InterestsHuman evolutionary genetics, mathematical models in evolution and genetics, mathematical phylogenetics, statistical and computational genetics, theoretical population genetics
-
David Rosenthal
Professor of Pediatrics (Pediatric Cardiology)
Current Research and Scholarly InterestsResearch interests include the study of Heart Failure, Cardiomyopathy and ventricular dysfunction in children, from a clinical perspective. Investigations include clinical trials of medications, cardiac resynchronization, and mechanical circulatory support.
-
Stephen J. Roth
Professor of Pediatrics (Cardiology)
Current Research and Scholarly InterestsRandomized Therapeutic Trials in Pediatric Heart Disease, NIH/U01 GrantNo. HL68285 2001-2006.
Heparin and the Reduction of Thrombosis (HART) Study. Pediatric Health Research Fund Award, Stanford Univ Sch of Medicine, 2005-2006.
A Pilot Trial fo B-type Natriuretic Peptide for Promotion of Urine Output in Diuretic-Resistant Infants Following Cardiovascular Surgery.Pediatric Health Research Fund Award, Stanford Univ Sch of Medicine, 2005-2006. -
Grant M. Rotskoff
Assistant Professor of Chemistry
BioGrant Rotskoff studies the nonequilibrium dynamics of living matter with a particular focus on self-organization from the molecular to the cellular scale. His work involves developing theoretical and computational tools that can probe and predict the properties of physical systems driven away from equilibrium. Recently, he has focused on characterizing and designing physically accurate machine learning techniques for biophysical modeling. Prior to his current position, Grant was a James S. McDonnell Fellow working at the Courant Institute of Mathematical Sciences at New York University. He completed his Ph.D. at the University of California, Berkeley in the Biophysics graduate group supported by an NSF Graduate Research Fellowship. His thesis, which was advised by Phillip Geissler and Gavin Crooks, developed theoretical tools for understanding nonequilibrium control of the small, fluctuating systems, such as those encountered in molecular biophysics. He also worked on coarsegrained models of the hydrophobic effect and self-assembly. Grant received an S.B. in Mathematics from the University of Chicago, where he became interested in biophysics as an undergraduate while working on free energy methods for large-scale molecular dynamics simulations.
Research Summary
My research focuses on theoretical and computational approaches to "mesoscale" biophysics. Many of the cellular phenomena that we consider the hallmarks of living systems occur at the scale of hundreds or thousands of proteins. Processes like the self-assembly of organelle-sized structures, the dynamics of cell division, and the transduction of signals from the environment to the machinery of the cell are not macroscopic phenomena—they are the result of a fluctuating, nonequilibrium dynamics. Experimentally probing mesoscale systems remains extremely difficult, though it is continuing to benefit from advances in cryo-electron microscopy and super-resolution imaging, among many other techniques. Predictive and explanatory models that resolve the essential physics at these intermediate scales have the power to both aid and enrich the understanding we are presently deriving from these experimental developments.
Major parts of my research include:
1. Dynamics of mesoscale biophysical assembly and response.— Biophysical processes involve chemical gradients and time-dependent external signals. These inherently nonequilibrium stimuli drive supermolecular organization within the cell. We develop models of active assembly processes and protein-membrane interactions as a foundation for the broad goal of characterizing the properties of nonequilibrium biomaterials.
2. Machine learning and dimensionality reduction for physical models.— Machine learning techniques are rapidly becoming a central statistical tool in all domains of scientific research. We apply machine learning techniques to sampling problems that arise in computational chemistry and develop approaches for systematically coarse-graining physical models. Recently, we have also been exploring reinforcement learning in the context of nonequilibrium control problems.
3. Methods for nonequilibrium simulation, optimization, and control.— We lack well-established theoretical frameworks for describing nonequilibrium states, even seemingly simple situations in which there are chemical or thermal gradients. Additionally, there are limited tools for predicting the response of nonequilibrium systems to external perturbations, even when the perturbations are small. Both of these problems pose key technical challenges for a theory of active biomaterials. We work on optimal control, nonequilibrium statistical mechanics, and simulation methodology, with a particular interest in developing techniques for importance sampling configurations from nonequilibrium ensembles. -
Daniel Rubin
Professor of Biomedical Data Science and of Radiology (Integrative Biomedical Imaging Informatics at Stanford), Emeritus
Current Research and Scholarly InterestsMy research interest is imaging informatics--ways computers can work with images to leverage their rich information content and to help physicians use images to guide personalized care. Work in our lab thus lies at the intersection of biomedical informatics and imaging science.
-
Mirabela Rusu
Assistant Professor of Radiology (Integrative Biomedical Imaging Informatics) and, by courtesy, of Urology and of Biomedical Data Science
Current Research and Scholarly InterestsDr. Mirabela Rusu focuses on developing analytic methods for biomedical data integration, with a particular interest in radiology-pathology fusion. Such integrative methods may be applied to create comprehensive multi-scale representations of biomedical processes and pathological conditions, thus enabling their in-depth characterization.
-
Florentine Rutaganira
Assistant Professor of Biochemistry and of Developmental Biology
Current Research and Scholarly InterestsWe use chemical tools to decipher the roles of key signaling networks in choanoflagellates, single-celled organisms that are the closest living relatives of animals. Choanoflagellates produce molecular signals essential for intercellular communication in animals and the presence of these molecules in choanoflagellates suggests that signaling components needed to communicate between cells is evolutionarily ancient. We aim to uncover new understanding of animal development, physiology and disease.
-
Brian Rutt
Professor of Radiology (Radiological Sciences Lab), Emeritus
Current Research and Scholarly InterestsMy research interests center on MRI research, including high-field and high-resolution MRI technology development as well as applications of advanced MRI techniques to studying the brain, cardiovascular system and cancer.
-
Raya Saab
Lindhard Family Professor of Pediatric Cancer Biology
BioOur laboratory focuses on investigating molecular mechanisms of oncogene-induced tumorigenesis and tumor suppressor pathways, and oncogenic signaling in the pediatric solid tumor rhabdomyosarcoma. Our earlier work identified the tumor suppressors p53 and p18Ink4c as inhibitors of Cyclin D1-driven tumorigenesis in a pineoblastoma model, through senescence induction, and highlighted distinct roles for the the RB and p53 pathways in induction and maintenance of oncogene-induced senescence. We also identified CDK2 as a potential target for inducing senescence in premalignant lesions to inhibit tumor progression.
Our current focus is on studying oncogenic signaling and tumor suppression in the childhood tumor rhabdomyosarcoma, to identify key mediators of invasion and metastasis, which is the most common cause of treatment failure clinically. We use preclinical in vitro and in vivo models, including murine and human cell lines, and mouse models of disease.
We have recently uncovered a paracrine role for rhabdomyosarcoma-secreted exosomes in impacting biology of stromal cells. Rhabdomyosarcoma-derived exosomes carry specific miRNA cargo that imparts an invasive and migratory phenotype on normal recipient fibroblasts, and proteomic analysis revealed specific and unique pathways relevant to the two different molecular rhabdomyosarcoma subtypes that are driven by distinct oncogenic pathways. We identified that the driver oncogene in fusion-positive rhabdomyosarcoma, PAX3-FOXO1, modulates exosome cargo to promote invasion, migration, and angiogenic properties, and identified specific microRNA and protein cargo acting as effectors of PAX3-FOXO1 exosome-mediated signaling, including modulation of oxidative stress response and cell survival signaling.
Our ongoing work is focused on interrogating specific paracrine signaling pathways and molecular mechanisms of metastatic disease progression in rhabdomyosarcoma, for potential therapeutic targeting. -
Chiara Sabatti
Professor of Biomedical Data Science and of Statistics
Current Research and Scholarly InterestsStatistical models and reasoning are key to our understanding of the genetic basis of human traits. Modern high-throughput technology presents us with new opportunities and challenges. We develop statistical approaches for high dimensional data in the attempt of improving our understanding of the molecular basis of health related traits.
-
Amin Saberi
Professor of Management Science and Engineering and, by courtesy, of Computer Science
BioAmin Saberi is Professor of Management Science and Engineering at Stanford University. He received his B.Sc. from Sharif University of Technology and his Ph.D. from Georgia Institute of Technology in Computer Science. His research interests include algorithms, design and analysis of social networks, and applications. He is a recipient of the Terman Fellowship, Alfred Sloan Fellowship and several best paper awards.
Amin was the founding CEO and chairman of NovoEd Inc., a social learning environment designed in his research lab and used by universities such as Stanford as well as non-profit and for-profit institutions for offering courses to hundreds of thousands of learners around the world.