Institute for Human-Centered Artificial Intelligence (HAI)


Showing 11-15 of 15 Results

  • Geoffrey Cohen

    Geoffrey Cohen

    James G. March Professor of Organizational Studies in Education and Business, Professor of Psychology and, by courtesy, of Organizational Behavior at the Graduate School of Business

    Current Research and Scholarly InterestsMuch of my research examines processes related to identity maintenance and their implications for social problems. One primary aim of my research is the development of theory-driven, rigorously tested intervention strategies that further our understanding of the processes underpinning social problems and that offer solutions to alleviate them. Two key questions lie at the core of my research: “Given that a problem exists, what are its underlying processes?” And, “Once identified, how can these processes be overcome?” One reason for this interest in intervention is my belief that a useful way to understand psychological processes and social systems is to try to change them. We also are interested in how and when seemingly brief interventions, attuned to underlying psychological processes, produce large and long-lasting psychological and behavioral change.

    The methods that my lab uses include laboratory experiments, longitudinal studies, content analyses, and randomized field experiments. One specific area of research addresses the effects of group identity on achievement, with a focus on under-performance and racial and gender achievement gaps. Additional research programs address hiring discrimination, the psychology of closed-mindedness and inter-group conflict, and psychological processes underlying anti-social and health-risk behavior.

  • Nicholas Alvaro Coles

    Nicholas Alvaro Coles

    Research Scientist

    BioI am a Research Scientist at Stanford University and the co-Director of the Stanford Big Team Science Lab. I conduct research on emotions, big team science, and AI.

    In affective science, I seek to understand the social, cognitive, and physiological processes that underlie emotion. Much of my research here has focused on examining the extent to which sensorimotor feedback from the peripheral nervous system (e.g., changes in heart rate and muscle tension) impact the conscious experience of emotion.

    In big team science, I seek to build infrastructure that allows researchers to collaboratively tackle ultra-complex questions in science. In this domain, I co-direct the Stanford Big Team Science Lab, where I support various big team science initiatives (e.g., the Virtual Experience Research Accelerator, Psychological Science Accelerator, and ManyBabies Consortium).

    In artificial intelligence, I am interested in ways that these new technologies can be used to monitor, predict, and change humans' emotions. For example, I recently founded the Emotion Physiology and Experience Collaboration, which seeks to improve the algorithmic recognition of emotion by (a) documenting cultural and contextual sources of model bias, and (b) building foundational datasets that can improve these models.

  • Steven Hartley Collins

    Steven Hartley Collins

    Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    BioSteve Collins is an Associate Professor of Mechanical Engineering at Stanford University, where he teaches courses on design and robotics and directs the Stanford Biomechatronics Laboratory. His primary focus is to speed and systematize the design and prescription of prostheses and exoskeletons using versatile device emulator hardware and human-in-the-loop optimization algorithms (Zhang et al. 2017, Science). Another interest is efficient autonomous devices, such as highly energy-efficient walking robots (Collins et al. 2005, Science) and exoskeletons that use no energy yet reduce the metabolic energy cost of human walking (Collins et al. 2015, Nature).

    Prof. Collins received his B.S. in Mechanical Engineering in 2002 from Cornell University, where he performed undergraduate research on passive dynamic walking robots. He received his Ph.D. in Mechanical Engineering in 2008 from the University of Michigan, where he performed research on the dynamics and control of human walking. He performed postdoctoral research on humanoid robots at T. U. Delft in the Netherlands. He was a professor of Mechanical Engineering and Robotics at Carnegie Mellon University for seven years. In 2017, he joined the faculty of Mechanical Engineering at Stanford University.

    Prof. Collins is a member of the Scientific Board of Dynamic Walking and the Editorial Board of Science Robotics. He has received the Young Scientist Award from the American Society of Biomechanics, the Best Medical Devices Paper from the International Conference on Robotics and Automation, and the student-voted Professor of the Year in his department.