Wu Tsai Human Performance Alliance
Showing 11-20 of 23 Results
-
Michaëlle Ntala Mayalu
Assistant Professor of Mechanical Engineering and, by courtesy, of Bioengineering
BioDr. Michaëlle N. Mayalu is an Assistant Professor of Mechanical Engineering. She received her Ph.D., M.S., and B.S., degrees in Mechanical Engineering at the Massachusetts Institute of Technology. She was a postdoctoral scholar at the California Institute of Technology in the Computing and Mathematical Sciences Department. She was a 2017 California Alliance Postdoctoral Fellowship Program recipient and a 2019 Burroughs Wellcome Fund Postdoctoral Enrichment Program award recipient. She is also a 2023 Hypothesis Fund Grantee.
Dr. Michaëlle N. Mayalu's area of expertise is in mathematical modeling and control theory of synthetic biological and biomedical systems. She is interested in the development of control theoretic tools for understanding, controlling, and predicting biological function at the molecular, cellular, and organismal levels to optimize therapeutic intervention.
She is the director of the Mayalu Lab whose research objective is to investigate how to optimize biomedical therapeutic designs using theoretical and computational approaches coupled with experiments. Initial project concepts include: i) theoretical and experimental design of bacterial "microrobots" for preemptive and targeted therapeutic intervention, ii) system-level multi-scale modeling of gut associated skin disorders for virtual evaluation and optimization of therapy, iii) theoretical and experimental design of "microrobotic" swarms of engineered bacteria with sophisticated centralized and decentralized control schemes to explore possible mechanisms of pattern formation. The experimental projects in the Mayalu Lab utilize established techniques borrowed from the field of synthetic biology to develop synthetic genetic circuits in E. coli to make bacterial "microrobots". Ultimately the Mayalu Lab aims to develop accurate and efficient modeling frameworks that incorporate computation, dynamical systems, and control theory that will become more widespread and impactful in the design of electro-mechanical and biological therapeutic machines. -
Jay McClelland
Lucie Stern Professor in the Social Sciences, Professor of Psychology and, by courtesy, of Linguistics and of Computer Science
On Partial Leave from 01/01/2025 To 03/31/2025Current Research and Scholarly InterestsMy research addresses topics in perception and decision making; learning and memory; language and reading; semantic cognition; and cognitive development. I view cognition as emerging from distributed processing activity of neural populations, with learning occurring through the adaptation of connections among neurons. A new focus of research in the laboratory is mathematical cognition and reasoning in humans and contemporary AI systems based on neural networks.
-
Tracey McLaughlin
Professor of Medicine (Endocrinology)
Current Research and Scholarly InterestsDr. McLaughlin conducts clinical research related to obesity, insulin resistance, diabetes, and cardiovascular disease (CVD). Current studies include: 1) the impact of macronutrient composition on metabolism, DM2 and CVD; 2) comparison of different weight loss diets on metabolism and CVD risk reduction ; 3) role of adipocytes and adipose tissue immune cells in modulating insulin resistance; 4) use of continuous glucose monitoring and multi-omics to define metabolic phenotype and precision diets
-
Jennifer A McNab
Associate Professor (Research) of Radiology (Radiological Sciences Laboratory)
Current Research and Scholarly InterestsMy research is focused on developing magnetic resonance imaging (MRI) methods that probe brain tissue microstructure. This requires new MRI contrast mechanisms, strategic encoding and reconstruction schemes, physiological monitoring, brain tissue modeling and validation. Applications of these methods include neuronavigation, neurosurgical planning and the development of improved biomarkers for brain development, degeneration, disease and injury.
-
Vinod Menon
Rachael L. and Walter F. Nichols, MD, Professor and Professor, by courtesy, of Education and of Neurology and Neurological Sciences
Current Research and Scholarly InterestsEXPERIMENTAL, CLINICAL AND THEORETICAL SYSTEMS NEUROSCIENCE
Cognitive neuroscience; Systems neuroscience; Cognitive development; Psychiatric neuroscience; Functional brain imaging; Dynamical basis of brain function; Nonlinear dynamics of neural systems. -
Emmanuel Mignot, MD, PhD
Craig Reynolds Professor of Sleep Medicine and Professor, by courtesy, of Genetics and of Neurology and Neurological Sciences
Current Research and Scholarly InterestsThe research focus of the laboratory is the study of sleep and sleep disorders such as narcolepsy and Kleine Levin syndrome. We also study the neurobiological and genetic basis of the EEG and develop new tools to study sleep using nocturnal polysomnography. Approaches mostly involve human genetic studies (GWAS, sequencing), EEG signal analysis (deep learning), and immunology (narcolepsy is an autoimmune disease of the brain). We also work on autoimmune encephalitis.
-
Carlos Milla
Professor of Pediatrics (Pulmonary Medicine) and, by courtesy, of Medicine (Pulmonary and Critical Care Medicine)
Current Research and Scholarly InterestsAt Stanford University I developed and currently direct the CF Translational Research Center. The overarching goal of the center is to provide the groundwork to streamline, accelerate, and promote the translation of basic discoveries into effective therapies and interventions to benefit patients affected by cystic fibrosis. My laboratory group currently has three main lines of investigation: respiratory cell biology in CF; remote biochemical monitoring; and lung physiology in young children.
-
Stephen B. Montgomery
Stanford Medicine Professor of Pathology, Professor of Genetics and of Biomedical Data Science
Current Research and Scholarly InterestsWe focus on understanding the effects of genome variation on cellular phenotypes and cellular modeling of disease through genomic approaches such as next generation RNA sequencing in combination with developing and utilizing state-of-the-art bioinformatics and statistical genetics approaches. See our website at http://montgomerylab.stanford.edu/