Wu Tsai Human Performance Alliance


Showing 1-8 of 8 Results

  • Sindy Tang

    Sindy Tang

    Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology (Precision Health and Integrated Diagnostics)

    Current Research and Scholarly InterestsThe long-term goal of Dr. Tang's research program is to harness mass transport in microfluidic systems to accelerate precision medicine and material design for a future with better health and environmental sustainability.

    Current research areas include: (I) Physics of droplets in microfluidic systems, (II) Interfacial mass transport and self-assembly, and (III) Applications in food allergy, single-cell wound repair, and the bottom-up construction of synthetic cell and tissues in close collaboration with clinicians and biochemists at the Stanford School of Medicine, UCSF, and University of Michigan.

    For details see https://web.stanford.edu/group/tanglab/

  • Daniel Tartakovsky

    Daniel Tartakovsky

    Professor of Energy Science Engineering

    Current Research and Scholarly InterestsEnvironmental fluid mechanics, Applied and computational mathematics, Biomedical modeling.

  • Peter Tass

    Peter Tass

    Professor of Neurosurgery

    BioDr. Peter Tass investigates and develops neuromodulation techniques for understanding and treating neurologic conditions such as Parkinson’s disease, epilepsy, dysfunction following stroke and tinnitus. He creates invasive and non-invasive therapeutic procedures by means of comprehensive computational neuroscience studies and advanced data analysis techniques. The computational neuroscience studies guide experiments that use clinical electrophysiology measures, such as high density EEG recordings and MRI imaging, and various outcome measures. He has pioneered a neuromodulation approach based on thorough computational modelling that employs dynamic self-organization, plasticity and other neuromodulation principles to produce sustained effects after stimulation. To investigate stimulation effects and disease-related brain activity, he focuses on the development of stimulation methods that cause a sustained neural desynchronization by an unlearning of abnormal synaptic interactions. He also performs and contributes to pre-clinical and clinical research in related areas.

  • Joseph D. Towles, PhD

    Joseph D. Towles, PhD

    Lecturer

    BioJoseph Towles is a Lecturer jointly appointed in the Mechanical Engineering and Bioengineering Departments at Stanford University. Joe’s teaching interests are in the areas of solid mechanics, neuromuscular biomechanics, dynamical systems and control, and engineering design. His scholarship interests are in the areas of neuromuscular biomechanics and educational practices in engineering.

    A Mechanical Engineer by training, Joe earned his BS degree in Mechanical Engineering from the University of Maryland Baltimore County and his MS and PhD degrees both in Mechanical Engineering from Stanford University (1996-2003). Following graduate school, Joe was a research post-doctoral fellow and subsequently a research scientist and then a research assistant professor in neuromuscular biomechanics in the Sensory Motor Performance Program at the Rehabilitation Institute of Chicago and in the Physical Medicine and Rehabilitation Department at Northwestern University (2003-2012). Additionally, Joe was a research health scientist for the Rehabilitation R&D Service in the Department of Veterans Affairs (Hines, IL) during that time and later a scientist in the neuromuscular biomechanics lab in the Mechanical Engineering Department at the University of Wisconsin-Madison (2012-2014). At the time, Joe led projects that addressed the broad question of how to restore hand function (ability to grasp objects) following cervical spinal cord injury and hemiparetic stroke using experimental and computational techniques in biomechanics. As a complement to intensively teaching within the undergraduate and graduate curricula in Biomedical Engineering at the University of Wisconsin-Madison (2014-2018), and now teaching intensively and broadly within the undergraduate curricula of Mechanical Engineering and Bioengineering at Stanford, Joe's scholarship interests include both biomechanics and educational practices in engineering. Recent educational projects have investigated factors that influence K-12 students' engagement/interest in bioengineering, integration of CATME into an undergraduate mechanical engineering design course that enhances student experience and performance, analytical tool for improving intra- and inter-team communication in an engineering design course, and factors important for teaching undergraduate students how to identify healthcare needs worth pursuing in the context of health technology innovation efforts.

  • Philip S. Tsao, PhD

    Philip S. Tsao, PhD

    Professor (Research) of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsOur primary interests are in the molecular underpinnings of vascular disease as well as assessing disease risk. In addition to targeted investigation of specific signaling molecules, we utilize global genomic analysis to identify gene expression networks and regulatory units. We are particularly interested in the role of microRNAs in gene expression pathways associated with disease.