Wu Tsai Human Performance Alliance
Showing 151-160 of 228 Results
-
Michelle Odden
Associate Professor of Epidemiology and Population Health
Current Research and Scholarly InterestsMultilevel - from cells to society - epidemiologic study of healthy aging
-
Allison Okamura
Richard W. Weiland Professor in the School of Engineering and Professor, by courtesy, of Computer Science
Current Research and Scholarly InterestsMy research focuses on developing the principles and tools needed to realize advanced robotic and human-machine systems capable of physical interaction. Application areas include surgery, simulation and training, rehabilitation, prosthetics, neuromechanics, exploration of hazardous and remote environments (e.g. space), design, and education.
-
Marily Oppezzo
Instructor, Medicine - Stanford Prevention Research Center
BioMarily Oppezzo is a behavioral and learning scientist. She completed her doctorate in Educational Psychology at Stanford in 2013. She also is a registered dietitian and has her master's of nutritional science. She completed her dietetic internship at the Palo Alto Veterans Hospital, and currently consults as a sports dietitian for Stanford's Runsafe program. Her research interests leverage her interdisciplinary training, with a focus on how to get people to change to improve their health and well-being. Specifically, these areas include: using social media to motivate physical activity changes in those with or at risk for heart disease; culturally tailoring nutrition and physical activity recommendations and education materials for an Alaskan native population; how walking can be used to improve people's cognitive and creative thinking; and applying learning theories to medical education topics.
-
Sergiu P. Pasca
Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program
Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain. -
Marco Perez
Associate Professor of Medicine (Cardiovascular Medicine)
BioDr. Marco Perez's research goal is to better understand the fundamental causes of cardiovascular disease through the study of genetics and epidemiology. His group studies the genetic variations and environmental exposures that are associated with conditions such as atrial fibrillation and heart failure. He has led the studies of atrial fibrillation in Women's Health Initiative, one of the largest nation-wide population-based cohorts. He is currently conducting a large study monitoring for silent or asymptomatic atrial fibrillation in women from the WHI randomized to exercise intervention, and was co-PI of the Apple Heart Study, a clinical trial that validated the ability of a smartwatch to detect atrial fibrillation. He is now PI of the Clinical Coordinating Center at Stanford for the REACT-AF which is a clinical trial to evaluate efficacy and safety of a "pill-in-the pocket" approach to anticoagulation for AF using a smartwatch. He is interested in understanding the paradox that atrial fibrillation is less common in African Americans and Hispanics, despite a greater burden of risk factors such as hypertension. As director of the Stanford Inherited Arrhythmia Clinic, he evaluates families with rare inherited arrhythmias associated with sudden death such as Long QT and Brugada Syndromes and explores their links with novel genes. He also studies the genetic causes of very early onset atrial fibrillation. He also studies how best to use the electrocardiogram and imaging modalities using Machine Learning techniques to identify patients at risk for cardiovascular disease. Dr. Perez receives funding from the NIH/NHLBI, Apple Inc., Janssen and the Colson Foundation.
-
Jennifer Pien MD
Clinical Associate Professor, Psychiatry and Behavioral Sciences
BioDr. Jennifer Pien is a Clinical Associate Professor through the Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine. She is the Director of The Pegasus Physician Writers as well as the Editor-In-Chief of The Pegasus Review, a medicine and literary journal of narrative medicine. Her clinical work is in physician well-being through WellConnect as well as in the area of developmental disabilities. She cofounded Puente Clinic through the San Mateo County Medical System, an innovative subspecialty clinic devoted to the care of adults with developmental disabilities. Her interests include medical humanities and the intersection of creative writing and medicine.
-
Russell Poldrack
Albert Ray Lang Professor of Psychology
Current Research and Scholarly InterestsOur lab uses the tools of cognitive neuroscience to understand how decision making, executive control, and learning and memory are implemented in the human brain. We also develop neuroinformatics tools and resources to help researchers make better sense of data.
-
Lisa Post
Clinical Professor, Psychiatry and Behavioral Sciences
BioDr. Lisa Post, Ph.D. is a licensed clinical psychologist specializing in the treatment of anxiety, depression and adjustment disorders in adults. She has been a practicing clinician at Stanford Hospital and Clinics since 1993. Since 2000, she has been Director of a clinical program for Stanford Varsity Athletes and for nine years has been the Team Clinician for the San Francisco 49ers. Her primary interest are in the treatment of high performing individuals and in stress management.
-
Manu Prakash
Associate Professor of Bioengineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Oceans and of Biology
BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.