Wu Tsai Human Performance Alliance


Showing 21-40 of 163 Results

  • Jennifer Carlson

    Jennifer Carlson

    Clinical Professor, Pediatrics - Adolescent Medicine

    Current Research and Scholarly InterestsMy research interests and scholarship fall into two major "buckets" of activity: 1) confidentiality and clinical informatics and 2) eating disorders, particularly the Female/Male Athlete Triad.

  • Akshay Chaudhari

    Akshay Chaudhari

    Assistant Professor (Research) of Radiology (Integrative Biomedical Imaging Informatics at Stanford) and, by courtesy, of Biomedical Data Science

    Current Research and Scholarly InterestsDr. Chaudhari is interested in the application of artificial intelligence techniques to all aspects of medical imaging, including automated schedule and reading prioritization, image reconstruction, quantitative analysis, and prediction of patient outcomes. His interests range from developing novel data-efficient machine learning algorithms to clinical deployment and validation of patient outcomes. He is also exploring combining imaging with clinical, natural language, and time series data.

  • Ovijit Chaudhuri

    Ovijit Chaudhuri

    Associate Professor of Mechanical Engineering

    Current Research and Scholarly InterestsWe study the physics of cell migration, division, and morphogenesis in 3D, as well cell-matrix mechanotransduction, or the process by which cells sense and respond to mechanical properties of the extracellular matrices. For both these areas, we use engineered biomaterials for 3D culture as artificial extracellular matrices.

  • Constance Chu, MD

    Constance Chu, MD

    Professor of Orthopaedic Surgery (Sports Medicine)

    BioDr. Constance R. Chu is Professor and Vice Chair Research, in the Department of Orthopedic Surgery at Stanford University. She is also Director of the Joint Preservation Center and Chief of Sports Medicine at the VA Palo Alto. Previously, she was the Albert Ferguson Endowed Chair and Professor of Orthopaedic Surgery at the University of Pittsburgh. She is a clinician-scientist who is both principal investigator of several projects funded by the National Institutes of Health and who has been recognized as a Castle-Connelly/US News and World Report “Top Doctor” in Orthopedic Surgery as well as on Becker’s list of Top Knee Surgeons in the United States. Her clinical practice focuses on the knee: primarily restoration and reconstruction of the ACL, menisci and cartilage. She graduated from the U.S. Military Academy at West Point and earned her medical degree from Harvard Medical School.

    As Director of the multi-disciplinary Joint Preservation Center structured to seamlessly integrate the latest advances in biologics, mechanics, and imaging with comprehensive patient centered musculoskeletal and orthopedic care, Dr. Chu aims to develop a new model for health care delivery, research and education with an emphasis on health promotion and prevention. Cornerstones of this program include teamwork and a focus on personalized medicine. A central goal is to transform the clinical approach to osteoarthritis from palliation to prevention. In addition to optimizing clinical operations, outstanding research is critical to developing more effective new treatments. Towards this end, Dr. Chu is leading innovative translational research from bench to bedside in three main areas: quantitative imaging and biomarker development for early diagnosis and staging of joint and cartilage injury and degeneration; cartilage tissue engineering and stem cell based cartilage repair; and molecular and biological therapies for joint restoration and joint rejuvenation. Her research efforts have led to more than 30 professional awards and honors to include a Kappa Delta Award, considered to be the highest research honor in Orthopedic Surgery.

    Dr. Chu also regularly holds leadership and committee positions in major professional organizations such as the American Association of Orthopedic Surgeons (AAOS) and the American Orthopedic Association (AOA). In her subspecialty of Orthopedic Sports Medicine, she is a past President of the Forum Sports Focus Group, a member of the Herodicus Society of leaders in Sports Medicine, and immediate past Chair of the American Orthopedic Society for Sports Medicine (AOSSM) Research Council. She is alumnus of the AOA American, British, Canadian (ABC) and the AOSSM Traveling Fellowships.

  • Todd Coleman

    Todd Coleman

    Associate Professor of Bioengineering and, by courtesy, of Electrical Engineering

    BioTodd P. Coleman is an Associate Professor in the Department of Bioengineering, and by courtesy, Electrical Engineering at Stanford University. He received B.S. degrees in electrical engineering (summa cum laude), as well as computer engineering (summa cum laude) from the University of Michigan. He received M.S. and Ph.D. degrees from MIT in electrical engineering and computer science. He did postdoctoral studies at MIT and Mass General Hospital in quantitative neuroscience. He previously was a faculty member in the Departments of Electrical & Computer Engineering and Bioengineering at the University of Illinois, Urbana-Champaign, and the University of California, San Diego, respectively. Dr. Coleman’s research is very multi-disciplinary, using tools from applied probability, physiology, and bioelectronics. Examples include, for instance, optimal transport methods in high-dimensional uncertainty quantification and developing technologies and algorithms to monitor and modulate physiology of the nervous systems in the brain and visceral organs. He has served as a Principal Investigator on grants from the NSF, NIH, Department of Defense, and multiple private foundations. Dr. Coleman is an inventor on 10 granted US patents. He has been selected as a Gilbreth Lecturer for the National Academy of Engineering, a TEDMED speaker, and a Fellow of IEEE as well as the American Institute for Medical and Biological Engineering. He is currently the Chair of the National Academies Standing Committee on Biotechnology Capabilities and National Security Needs.

  • Steven Hartley Collins

    Steven Hartley Collins

    Associate Professor of Mechanical Engineering

    BioSteve Collins is an Associate Professor of Mechanical Engineering at Stanford University, where he teaches courses on design and robotics and directs the Stanford Biomechatronics Laboratory. His primary focus is to speed and systematize the design and prescription of prostheses and exoskeletons using versatile device emulator hardware and human-in-the-loop optimization algorithms (Zhang et al. 2017, Science). Another interest is efficient autonomous devices, such as highly energy-efficient walking robots (Collins et al. 2005, Science) and exoskeletons that use no energy yet reduce the metabolic energy cost of human walking (Collins et al. 2015, Nature).

    Prof. Collins received his B.S. in Mechanical Engineering in 2002 from Cornell University, where he performed undergraduate research on passive dynamic walking robots. He received his Ph.D. in Mechanical Engineering in 2008 from the University of Michigan, where he performed research on the dynamics and control of human walking. He performed postdoctoral research on humanoid robots at T. U. Delft in the Netherlands. He was a professor of Mechanical Engineering and Robotics at Carnegie Mellon University for seven years. In 2017, he joined the faculty of Mechanical Engineering at Stanford University.

    Prof. Collins is a member of the Scientific Board of Dynamic Walking and the Editorial Board of Science Robotics. He has received the Young Scientist Award from the American Society of Biomechanics, the Best Medical Devices Paper from the International Conference on Robotics and Automation, and the student-voted Professor of the Year in his department.

  • David N. Cornfield

    David N. Cornfield

    Anne T. and Robert M. Bass Professor of Pediatric Pulmonary Medicine and Professor, by courtesy, of Surgery

    Current Research and Scholarly InterestsOver the past 20 years, the Cornfield Laboratory has focused upon basic, translational and clinical research, with a primary focus on lung biology. As an active clinician-scientist, delivering care to acutely and chronically ill infants and children, our lab focuses on significant clinical challenges and tried to use science to craft novel solutions to difficult clinical problems.

  • Alia Crum

    Alia Crum

    Associate Professor of Psychology and, by courtesy, of Medicine (Primary Care & Population Health)

    Current Research and Scholarly InterestsOur lab focuses on how subjective mindsets (e.g., thoughts, beliefs and expectations) can alter objective reality through behavioral, psychological, and physiological mechanisms. We are interested in understanding how mindsets affect important outcomes both within and beyond the realm of medicine, in the domains such as exercise, diet and stress. https://mbl.stanford.edu/

  • Francesco Nandkumar Dandekar

    Francesco Nandkumar Dandekar

    Clinical Assistant Professor, Psychiatry and Behavioral Sciences

    BioDr. Dandekar is the Associate Director of Sports Psychiatry and a Clinical Assistant Professor at Stanford University. After graduating summa cum laude from the University of Southern California with a B.S. in Biomedical Engineering, he earned a Regents Scholarship to complete his M.D. at UC San Diego, where he received the American Academy of Neurology’s Prize for Excellence. During his residency and fellowship at Stanford, Dr. Dandekar provided care to a variety of patients utilizing a combination of medication management, psychotherapy, and lifestyle changes (sleep, nutrition, exercise, recovery). Teamed with Clinical Professor Dr. Douglas Noordsy, he helped to incorporate psychiatric services into Stanford's sports psychology program, and continues to see elite athletes as part of the Stanford Sports Psychiatry Clinic. He also specializes in treating physicians, and sees many residents, fellows, and attendings in his private practice. In his free time, he enjoys playing tennis, chess, and guitar.

  • Reinhold Dauskardt

    Reinhold Dauskardt

    Ruth G. and William K. Bowes Professor in the School of Engineering

    BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.

  • John W. Day, MD, PhD

    John W. Day, MD, PhD

    Professor of Neurology, of Pediatrics (Genetics) and, by courtesy, of Pathology

    Current Research and Scholarly InterestsOur Neuromuscular Division coordinates a comprehensive effort to conquer peripheral nerve and muscle disorders, including the muscular dystrophies, motor neuron disorders, neuromuscular junction abnormalities, and peripheral neuropathies. With patients and families foremost in mind, we have had success defining and combating these diseases, with research focused on identifying genetic causes, developing novel treatment, and maximizing patient function by optimizing current management.

  • Luis de Lecea

    Luis de Lecea

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical and Translational Neurosciences Incubator)

    Current Research and Scholarly InterestsMy lab uses molecular, optogenetic, anatomical and behavioral methods to identify and manipulate the neuronal circuits underlying brain arousal, with particular attention to sleep and wakefulness transitions. We are also interested in the changes that occur in neuronal circuits in conditions of hyperarousal such as stress and drug addiction.

  • Scott L. Delp, Ph.D.

    Scott L. Delp, Ph.D.

    Director, Wu Tsai Human Performance Alliance at Stanford, James H. Clark Professor in the School of Engineering, Professor of Bioengineering, of Mechanical Engineering and, by courtesy, of Orthopaedic Surgery

    Current Research and Scholarly InterestsExperimental and computational approaches to study human movement. Development of biomechanical models to analyze muscle function, study movement abnormalities, design medical products, and guide surgery. Imaging and health technology development. Discovering the principles of peak performance to advance human health. Human performance research. Wearable technologies, video motion capture, and machine learning to enable large-scale analysis.

  • Joseph M. DeSimone

    Joseph M. DeSimone

    Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry, of Materials Science and Engineering, and of Operations, Information and Technology at the Graduate School of Business

    BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.

    The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.

    Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.

    In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech.

  • Joseph P. Donahue

    Joseph P. Donahue

    Clinical Assistant Professor, Orthopaedic Surgery

    BioDr. Donahue is a Board Certified Orthopaedic Surgeon with Subspecialty Certification in Orthopaedic Sports Medicine. He is fellowship trained and specializes in Arthroscopic and Minimally Invasive Reconstructive Surgery of the Shoulder and Knee, and Sports Medicine.

    Dr. Donahue received his undergraduate degree from Stanford University and his Doctor of Medicine from Columbia University College of Physicians and Surgeons. He completed his residency in Orthopedic Surgery at St. Luke’s-Roosevelt Hospital Center (NYC), Memorial Sloan-Kettering Cancer Center (NYC), and the Alfred I. duPont Institute (DE), and went on to a fellowship in Orthopedic Sports Medicine at the Stanford/SOAR Sports Medicine Fellowship Program.

    Dr. Donahue’s interests include arthroscopic surgery of the shoulder and knee. He specializes in anterior cruciate ligament injuries, shoulder instability, and rotator cuff tears. He has done research on both shoulder instability and rotator cuff tears and has developed new techniques and medical devices for rotator cuff and all soft tissue repairs. He has started and actively serves on the medical advisory board for several surgical device companies and continues to design new surgical devices for arthroscopic procedures. He has authored several device patents and journal articles.

    Dr. Donahue has been a member of the American Academy of Orthopedic Surgeons and a Diplomat of the American Board of Orthopedic Surgery. He is also member of the Arthroscopy Association of North America, the American Orthopedic Society of Sports Medicine, the California Orthopedic Association, The International Knee Society, the California Medical Association, and the Santa Clara Medical Society.

    Dr. Donahue has served as the Program Director of the SOAR Orthopedic Sports Medicine Fellowship Program. He has served as the Director of Santa Clara University’s Sports Medicine Program and the Head Team Physician for all of Santa Clara University’s athletic teams, a team physician for the San Francisco 49ers, the San Francisco Giants, the Stanford Athletic Department, and many other area collegiate and high school teams.

  • Alfredo Dubra, PhD

    Alfredo Dubra, PhD

    Professor of Ophthalmology
    On Leave from 06/01/2022 To 08/31/2022

    Current Research and Scholarly InterestsOur lab seeks to help the early diagnosing and monitoring progression of ocular, vascular, neurodegenerative and systemic diseases through novel non-invasive optical ophthalmic imaging. We pursue this goal through a multidisciplinary approach that integrates optics, computer science, vision science, electrical engineering and other engineering disciplines.

  • Johannes C. Eichstaedt

    Johannes C. Eichstaedt

    Assistant Professor (Research) of Psychology

    Current Research and Scholarly InterestsI use large-scale language analyses and machine learning to characterize disease risk, measure subjective well-being and mental health of populations, and enrich and test psychological theory. I focus on applications of these methods that inform public health and public policy, and to create health systems that are more responsive to mental illness.

  • Chelsea Finn

    Chelsea Finn

    Assistant Professor of Computer Science and of Electrical Engineering

    BioChelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University, and the William George and Ida Mary Hoover Faculty Fellow. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected experience, and meta-learning algorithms that can enable fast learning of new concepts and behaviors. Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.

    Website: https://ai.stanford.edu/~cbfinn

  • Michael Fischbach

    Michael Fischbach

    Associate Professor of Bioengineering and of Medicine (Microbiology and Immunology)

    Current Research and Scholarly InterestsThe human microbiome is linked to a range of phenotypes in the host, but it remains difficult to test causality and explore the mechanisms of these interactions. Our lab focuses on two research areas that share a common goal of studying host-microbiota interactions at the level of molecular mechanism:

    1) Technology development. Much of what we know about biology has been learned by deleting individual genes from mice, worms, flies and yeast. The ability to do single-strain and single-gene deletion in the microbiome would be transformative but does not yet exist. We are developing technology in three areas to make this possible:

    Synthetic ecology: There is a pressing need for model systems for the microbiome that are defined, but of an order of complexity that approaches the native state. Key experiments in the field often show that a host phenotype can be transferred to a germ-free mouse via fecal transplant. If these phenomena could be recapitulated with a defined, high-complexity community, then reductionist experiments to probe mechanism would be possible. We are developing the technology required to build highly complex defined communities (100-200 bacterial species), make them stable upon transplantation into mice, and probe their function in vitro and in vivo.

    Genetics: It is difficult to probe mechanism without genetics, and genetic tools exist for only ~10% of the bacterial species in the gut and skin microbiome. We are developing technologies that will make it possible to delete and insert genes, and build mutant libraries, in many of the most common bacterial strains in the gut and skin microbiome.

    Computation: In previous work from the lab, we have developed computational algorithms that identify small-molecule-producing genes in bacterial genomes. In current work, we are devising algorithms for genome mining that are specific to the microbiome, and new tools for predicting the chemical structures of small molecules from untargeted metabolomics data.

    2) Molecular mechanisms. Many of the early findings in microbiome research are correlative or associative. We are applying the tools described above to explore the mechanisms underlying these phenomena:

    Small molecules: Our lab has had a long-standing interest in small molecules from the microbiota. These include: 1) host-derived molecules metabolized by the microbiome, like bile acids; 2) characteristic components of the bacterial membrane and cell wall, including LPS and capsular polysaccharides; and 3) hundreds of other diffusible small molecules (e.g., the products of polysaccharide and amino acid metabolism) that are present in the bloodstream at high concentrations. Our work in this area seeks to establish the mechanisms by which these molecules modulate host biology, especially by deleting them one at a time in the background of a complex community; and to discover new microbiome-derived metabolites present in the bloodstream and host tissues.

    Ecology of complex communities: Synthetic ecology at the 100+ strain scale is entirely unexplored, and the emergent properties of complex communities are not well understood. Our work in this area seeks to understand basic principles outlined by the following questions: How many meaningful interactions exist in a community of hundreds of strains? What constitutes a niche, molecularly and spatially, and how do strains map to niches? What are the molecular correlates of stability, and how does a community reconfigure in response to a perturbation? How rare or common are stable states, and how predictable is the process by which a consortium will evolve toward a stable state? To what extent do priority effects (early colonists and events) determine the outcome of ecosystem development? Can the results of ecosystem competition be predicted or engineered?