Wu Tsai Human Performance Alliance
Showing 231-240 of 296 Results
-
Kawin Setsompop
Associate Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering
BioKawin Setsompop is an Associate Professor of Radiology and, by courtesy, of Electrical Engineering. His research focuses on the development of novel MRI acquisition methods, with the goal of creating imaging technologies that can be used to help better understand brain structure and function for applications in Healthcare and Health sciences. He received his Master’s degree in Engineering Science from Oxford University and his PhD in Electrical Engineering and Computer Science from MIT. Prior to joining Stanford, he was a postdoctoral fellow and subsequently a faculty at the A.A. Martinos center for biomedical imaging, MGH, as well as part of the Harvard and MIT faculty. His group has pioneered several widely-used MRI acquisition technologies, a number of which have been successfully translated into FDA-approved clinical products on Siemens, GE, Phillips, United Imaging and Bruker MRI scanners worldwide. These technologies are being used daily to study the brain in both clinical and neuroscientific fields.
-
Nigam H. Shah, MBBS, PhD
Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science
Current Research and Scholarly InterestsWe answer clinical questions using aggregate patient data at the bedside. The Informatics Consult Service (https://greenbutton.stanford.edu/) put this idea in action and led to the creation of Atropos Health. We build predictive models that allow taking mitigating actions, keeping the human in the loop.
-
Eric S.G. Shaqfeh
Lester Levi Carter Professor and Professor of Mechanical Engineering
Current Research and Scholarly InterestsI have over 25 years experience in theoretical and computational research related to complex fluids following my PhD in 1986. This includes work in suspension mechanics of rigid partlcles (rods), solution mechanics of polymers and most recently suspensions of vesicles, capsules and mixtures of these with rigid particles. My research group is internationally known for pioneering work in all these areas.
-
Carla Shatz
Sapp Family Provostial Professor and Professor of Biology and of Neurobiology
On Leave from 09/01/2024 To 08/31/2025Current Research and Scholarly InterestsThe goal of research in the Shatz Laboratory is to discover how brain circuits are tuned up by experience during critical periods of development both before and after birth by elucidating cellular and molecular mechanisms that transform early fetal and neonatal brain circuits into mature connections. To discover mechanistic underpinnings of circuit tuning, the lab has conducted functional screens for genes regulated by neural activity and studied their function for vision, learning and memory.
-
Kevin Shea
Chambers-Okamura Endowed Professor of Pediatric Orthopaedics
BioKevin G. Shea, MD is an orthopaedic surgeon at Stanford University Medical Center and the Lucile Packard Children’s Hospital. Dr. Shea grew up in Montana and California, graduated from the UCLA School of Medicine, and completed his orthopaedic residency at the University of Utah School of Medicine. His advanced training includes pediatric orthopaedics at Rady Children’s Hospital in San Diego, AO Fellowship in Bern Switzerland with Drs. Ganz (Hip), Dr. Diego Fernandez (Trauma), and Dr. Hans Staubli (sports), and Ilizarov Training in Lecco, Italy. He was the AOSSM Traveling Sports Medicine Fellow in 2008, and practiced in Boise, ID prior to joining the Stanford Faculty. Dr. Shea is a founding member of the PRiSM Society (Pediatric Research in Sports Medicine), the ROCK (Research in OsteoChondritis of the Knee) Multi-center Study Group, and the SCORE prospective cohort registry for pediatric sports arthroscopy outcomes, complications. He is a member of the AAOS (American Academy of Orthopaedic Surgeons), POSNA (Pediatric Orthopaedic Society of North America) and the AOSSM (American Orthopedic Society for Sports Medicine). In addition, Dr. Shea has authored more than 240 scientific papers and book chapters.
-
Krishna Shenoy
Member, Bio-X
Current Research and Scholarly InterestsWe conduct neuroscience, neuroengineering and translational research to better understand how the brain controls movement, and to design medical systems to assist people with paralysis. These are referred to as brain-machine interfaces (BMIs), brain-computer interfaces (BCIs) and intra-cortical neural prostheses. We conduct this research as part of our Neural Prosthetic Systems Lab (NPSL) and our Neural Prosthetics Translational Lab (NPTL), which I co-direct with Prof. Jaimie Henderson, M.D.
-
Seth Lawrence Sherman, MD
Associate Professor of Orthopaedic Surgery
Current Research and Scholarly InterestsMy research focuses on ways to augment tissue healing, improve human performance, and prevent musculoskeletal injuries. Approaching these challenges through parallel basic science and clinical pathways, our team works from the “bedside to the bench and back to the bedside”, identifying areas of clinical need to deliver evidence-based solutions for patients.
We collaborates with orthopaedic surgeons, non-surgical physicians, and researchers within bioengineering, human performance, and musculoskeletal imaging across the Stanford campus. The team is developing novel methods to accurately record human movement (including wearable technology, phone-based systems), rapid MRI imaging protocols, and exploring the use of biomarkers to track injury and recovery. This research builds on my earlier work, which utilized portable, inexpensive software for Microsoft Kinect to detect knee injury risk in youth athletes performing a drop vertical jump test. The team’s multifaceted goal is: 1) develop innovative methods to screen for injury risk (i.e. youth athlete non-contact ACL), 2) create targeted intervention programs to reduce risk, 3) enhance athletic performance; and 4) improve accuracy of return to play testing following injury/surgery (i.e. clinical evaluation, biomarkers, functional tests, imaging analysis for healing).
In the laboratory,our team investigates cellular and molecular deficiencies in tissue types including tendon, ligament, articular cartilage, and meniscus. By understanding aberrant pathways leading to tissue injury, they can identify innovative therapeutic targets for intervention. In collaboration with the Genetic Engineering and Synthetic Biology laboratories, Dr. Sherman’s research has explored the role of orthobiologic agents such as platelet rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) for tissue healing in patella tendinopathy (the breakdown of collagen in a tendon). Our lab is also investigating the use of CBD for musculoskeletal applications as an alternative to commonly used local anesthetics and cortisone derivatives. In my earlier work, we researched the cellular toxicity of such applications.
In addition to basic science research, I have helped to build a Sports Medicine clinical research team that includes several full-time clinical research coordinators, residents, fellows, and students. The team collects prospective outcomes on their patients using a novel data collection platform called Patient IQ. The group is part of the JUPITER study which is the largest, multicenter study ever assembled in patellofemoral instability. They are additionally planning to enroll in FDA-approved clinical studies investigating pioneering strategies for knee cartilage restoration, joint preservation, and orthobiologic injections for osteoarthritis. Recent clinical publications explore outcomes in meniscus preservation and transplantation, medial patellofemoral ligament reconstruction, osteochondral allograft and matrix-induced autologous chondrocyte implantation (MACI), and surgical augmentation using PRP/BMAC. The clinical research team actively reports results of non-surgical and surgical interventions to continue to introduce new knowledge to the field, with the goal of improved patient outcome.