Precourt Institute for Energy


Showing 1-6 of 6 Results

  • Brian Cantwell

    Brian Cantwell

    Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering

    BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.

  • Christopher Chidsey

    Christopher Chidsey

    Associate Professor of Chemistry

    Current Research and Scholarly InterestsThe Chidsey group research interest is to build the chemical base for molecular electronics. To accomplish this, we synthesize the molecular and nanoscopic systems, build the analytical tools and develop the theoretical understanding with which to study electron transfer between electrodes and among redox species through insulating molecular bridges

  • William Chueh

    William Chueh

    Assistant Professor of Materials Science and Engineering and Center Fellow at the Precourt Institute for Energy

    BioThe Chueh Group explores efficient electrochemical routes for converting solar energy to chemical fuels and subsequently to electricity. The group also develops next-generation electrochemical energy storage materials. We take a rational approach towards materials discovery and optimization. Using powerful electron, X-ray and optical microscopy and spectroscopy techniques, we visualize electrochemical reactions as they take place on length scales ranging from tens of microns down to sub-nm. These fundamental observations, combined with atomistic- and continuum-level models, lead to new insights into the design of functional materials with novel compositions and structures. We utilize a wide range of solution, vapor and solid-state routes to create high-performance electrochemical devices, such as photo-electrochemical cells, fuel cells, electrolyzers and metal-air batteries.

  • Bruce Clemens

    Bruce Clemens

    Walter B. Reinhold Professor in the School of Engineering and Professor of Photon Science and, by courtesy, of Applied Physics

    BioClemens studies growth and structure of thin film, interface and nanostructured materials for catalytic, electronic and photovoltaic applications. He and his group investigate phase transitions and kinetics in nanostructured materials, and perform nanoparticle engineering for hydrogen storage and catalysis. Recently he and his collaborators have developed nano-portals for efficient injection of hydrogen into storage media, dual-phase nanoparticles for catalysis, amorphous metal electrodes for semiconductor devices, and a lift-off process for forming free-standing, single-crystal films of compound semiconductors.

  • Craig Criddle

    Craig Criddle

    Professor of Civil and Environmental Engineering and Senior Fellow, by courtesy, at the Woods Institute for the Environment

    BioCriddle's research focuses on biotechnology and microbial ecology for clean water, clean energy, and healthy ecosystems.

  • Yi Cui

    Yi Cui

    Professor of Materials Science and Engineering, of Photon Science and, by courtesy, of Chemistry

    BioCui studies nanoscale phenomena and their applications broadly defined. Research Interests: Nanocrystal and nanowire synthesis and self-assembly, electron transfer and transport in nanomaterials and at the nanointerface, nanoscale electronic and photonic devices, batteries, solar cells, microbial fuel cells, water filters and chemical and biological sensors.