Precourt Institute for Energy


Showing 1-50 of 119 Results

  • Nicole Ardoin

    Nicole Ardoin

    Director, E-IPER, Associate Professor of Education and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsCommunity Involvement
    Community/Youth Development and Organizations
    Diversity
    Environmental Education
    Ethnography
    Evaluation
    Organizations
    Qualitative Research Methods

  • Inês Azevedo

    Inês Azevedo

    Associate Professor of Energy Resources Engineering and Senior Fellow at the Woods Institute for the Environment and the Precourt Institute for Energy

    Current Research and Scholarly InterestsProfessor Azevedo is passionate about solving problems that include environmental, technical, economic, and policy issues, where traditional engineering approaches play an important role but cannot provide a complete answer. In particular, she is interested in assessing how energy systems are likely to evolve, which requires comprehensive knowledge of the technologies that can address future energy needs and the decision-making process followed by various agents in the economy.

  • Khalid Aziz

    Khalid Aziz

    Otto N. Miller Professor in the School of Earth Sciences, Emeritus

    Current Research and Scholarly InterestsOptimization and reservoir Simulation.

  • Jack Baker

    Jack Baker

    Professor of Civil and Environmental Engineering

    BioJack Baker's research focuses on the use of probabilistic and statistical tools for modeling of extreme loads on structures. He has investigated probabilistic modeling of seismic hazards, improved characterization of earthquake ground motions, dynamic analysis of structures, prediction of the spatial extent of soil failures from earthquakes, and tools for modeling loads on spatially distributed infrastructure systems. Dr. Baker joined Stanford from the Swiss Federal Institute of Technology (ETH Zurich), where he was a visiting researcher in the Department of Structural Engineering. He received his Ph.D. in Structural Engineering from Stanford University, where he also earned M.S. degrees in Statistics and Structural Engineering. He has industry experience in seismic hazard assessment, ground motion selection, construction management, and modeling of catastrophe losses for insurance companies.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor in the School of Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Chemistry

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She is the Department Chair of Chemical Engineering from 2018. She is a member of the National Academy of Engineering and National Academy of Inventors. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 550 refereed publications and more than 65 US patents. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies. She is Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE. She was a recipient of the ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011, and was selected by Phoenix TV, China as 2010 Most influential Chinese in the World-Science and Technology Category. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001. She has been selected in 2002 by the American Chemical Society Women Chemists Committee as one of the twelve Outstanding Young Woman Scientist who is expected to make a substantial impact in chemistry during this century. She is also selected by MIT Technology Review magazine in 2003 as one of the top 100 young innovators for this century. She has been selected as one of the recipients of Stanford Terman Fellow and has been appointed as the Robert Noyce Faculty Scholar, Finmeccanica Faculty Scholar and David Filo and Jerry Yang Faculty Scholar.

  • Sven Beiker

    Sven Beiker

    Lecturer, Graduate School of Business - Academic Administration

    BioSven Beiker is a Lecturer in Management at the GSB, and the Managing Director of Silicon Valley Mobility, an independent consulting & advisory firm. He covers the electrification, automation, connectivity, and sharing of automobiles through the lens of new technologies and business models. This is reflected in his teaching at the GSB as well as in his professional engagements. Prior to his independent consulting work, he served as an Expert Consultant for mobility topics at McKinsey & Company for 2.5 years.

    Dr. Beiker is also the former Executive Director of the Center for Automotive Research at Stanford, an industry affiliates program that he launched in 2008 together with Stanford Professors Gerdes, Nass, and Thrun. Before coming to Stanford, Dr. Beiker worked at the BMW Group for more than 13 years. Between 1995 and 2008 he pursued responsibilities in technology scouting, innovation management, systems design, and series development. He primarily applied his expertise to chassis and powertrain projects, which also provided him with profound insights into the industry’s processes and best practices. In addition, he worked in three major automotive and technology locations: Germany, Silicon Valley, and Detroit.

    Dr. Beiker received his MS (1995) and PhD (1999) degrees in Mechanical Engineering from the Technical University in Braunschweig, Germany. He published various technical papers and holds several patents in the fields of vehicle dynamics and powertrain technology.

  • Sally Benson

    Sally Benson

    Precourt Family Professor and Director, Precourt Institute for Energy

    Current Research and Scholarly InterestsMy research is focused on reducing the risks of climate change by developing energy supplies with low carbon emissions. Students and post-doctoral fellows in my research group work on carbon dioxide storage, energy systems analysis, and pathways for transitioning to a low-carbon energy system.

  • Stacey Bent

    Stacey Bent

    Vice Provost for Graduate Education and Postdoctoral Affairs, Jagdeep and Roshni Singh Professor in the School of Engineering, and Professor, by courtesy, of Materials Science & Engineering, of Electrical Engineering and of Chemistry

    BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.

  • Dennis Bird

    Dennis Bird

    Professor of Geological Sciences, Emeritus

    Current Research and Scholarly InterestsTheoretical geochemistry of reactions among aqueous solutions and minerals in magma-hydrothermal systems; environmental geochemistry of toxic metals in the Mother Lode Gold region, CA, and the emergence of life in the aftermath of the Moon-forming impact, ca. 4.4Ga.

  • Michael G. Borja

    Michael G. Borja

    Finance and Administration Manager, Precourt Institute for Energy

    BioA native to the Central Valley, Michael G. Borja developed a career focus within the realm of finance during his undergrad experience at UC Davis, earning a BS in Economics. Borja started his Stanford career working in first and second year student programs as part of the Business Team for Stanford Introductory Studies with the Vice Provost Office for Undergraduate Education (VPUE). After 3 gainful years, he transitioned into the dynamic workspace at Stanford Energy. With keen value for the Stanford University mission, and as a contributing staff member to the Precourt Institute for Energy, Michael G. Borja is proud to provide expertise for support of the organization's several upcoming and truly groundbreaking achievements. Take a look @ energy.stanford.edu

  • Stephen Boyd

    Stephen Boyd

    Samsung Professor in the School of Engineering and Professor, by courtesy, of Computer Science and of Management Science and Engineering

    BioStephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University. He has courtesy appointments in the Department of Management Science and Engineering and the Department of Computer Science, and is member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, machine learning, and finance.

    Professor Boyd received an AB degree in Mathematics, summa cum laude, from Harvard University in 1980, and a PhD in EECS from U. C. Berkeley in 1985. In 1985 he joined Stanford's Electrical Engineering Department. He has held visiting Professor positions at Katholieke University (Leuven), McGill University (Montreal), Ecole Polytechnique Federale (Lausanne), Tsinghua University (Beijing), Universite Paul Sabatier (Toulouse), Royal Institute of Technology (Stockholm), Kyoto University, Harbin Institute of Technology, NYU, MIT, UC Berkeley, CUHK-Shenzhen, and IMT Lucca. He holds honorary doctorates from Royal Institute of Technology (KTH), Stockholm, and Catholic University of Louvain (UCL).

    Professor Boyd is the author of many research articles and four books: Introduction to Applied Linear Algebra: Vectors, Matrices, and Least-Squares (with Lieven Vandenberghe, 2018), Convex Optimization (with Lieven Vandenberghe, 2004), Linear Matrix Inequalities in System and Control Theory (with El Ghaoui, Feron, and Balakrishnan, 1994), and Linear Controller Design: Limits of Performance (with Craig Barratt, 1991). His group has produced many open source tools, including CVX (with Michael Grant), CVXPY (with Steven Diamond) and Convex.jl (with Madeleine Udell and others), widely used parser-solvers for convex optimization.

    Professor Boyd has received many awards and honors for his research in control systems engineering and optimization, including an ONR Young Investigator Award, a Presidential Young Investigator Award, and the AACC Donald P. Eckman Award. In 2013, he received the IEEE Control Systems Award, given for outstanding contributions to control systems engineering, science, or technology. In 2012, Michael Grant and he were given the Mathematical Optimization Society's Beale-Orchard-Hays Award, for excellence in computational mathematical programming. He is a Fellow of the IEEE, SIAM, and INFORMS, a Distinguished Lecturer of the IEEE Control Systems Society, a member of the US National Academy of Engineering, a foreign member of the Chinese Academy of Engineering, and a foreign member of the National Academy of Engineering of Korea. He has been invited to deliver more than 90 plenary and keynote lectures at major conferences in control, optimization, signal processing, and machine learning.

    He has developed and taught many undergraduate and graduate courses, including Signals & Systems, Linear Dynamical Systems, Convex Optimization, and a recent undergraduate course on Matrix Methods. His graduate convex optimization course attracts around 300 students from more than 20 departments. In 1991 he received an ASSU Graduate Teaching Award, and in 1994 he received the Perrin Award for Outstanding Undergraduate Teaching in the School of Engineering. In 2003, he received the AACC Ragazzini Education award, for contributions to control education, with citation: “For excellence in classroom teaching, textbook and monograph preparation, and undergraduate and graduate mentoring of students in the area of systems, control, and optimization.” In 2016 he received the Walter J. Gores award, the highest award for teaching at Stanford University. In 2017 he received the IEEE James H. Mulligan, Jr. Education Medal, for a career of outstanding contributions to education in the fields of interest of IEEE, with citation "For inspirational education of students and researchers in the theory and application of optimization."

  • Adam Brandt

    Adam Brandt

    Associate Professor of Energy Resources Engineering

    Current Research and Scholarly InterestsGreenhouse gas emissions, energy systems optimization, mathematical modeling of resource depletion, life cycle analysis

  • Mark Brongersma

    Mark Brongersma

    Stephen Harris Professor and Professor of Materials Science and Engineering and, by courtesy, of Applied Physics

    BioMark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD in Materials Science from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. During this time, he coined the term “Plasmonics” for a new device technology that exploits the unique optical properties of nanoscale metallic structures to route and manipulate light at the nanoscale. His current research is directed towards the development and physical analysis of nanostructured materials that find application in nanoscale electronic and photonic devices. Brongersma received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the Optical Society of America, the SPIE, and the American Physical Society.

  • Thomas Byers

    Thomas Byers

    Entrepreneurship Professor in the School of Engineering
    On Leave from 01/01/2021 To 03/31/2021

    Current Research and Scholarly InterestsApplied ethics, responsible innovation, and global entrepreneurship education (see http://peak.stanford.edu).

  • Brian Cantwell

    Brian Cantwell

    Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering

    BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.

  • Jimmy Chen

    Jimmy Chen

    Managing Director, SECA - Stanford Energy Corporate Affiliates, Precourt Institute for Energy

    BioJimmy Chen is responsible for developing and managing the Stanford Energy Corporate Affiliate (SECA) program, and establishing engagements for corporations and other organizations that have an interest in collaborating with Stanford on energy and energy-related research. As Managing Director of SECA, he serves as a Director for Stanford’s Precourt Institute for Energy. Besides previously being the founding Managing Director for the Precourt Institute’s Bits and Watts Initiative, he currently serves the Managing Director of the Stanford StorageX Initiative and is on the leadership team of the Stanford Hydrogen Focus Group.

    He has a broad background in energy and technology, specializing in technology and product development. He has held technical positions at Lawrence Berkeley Labs, GTE Labs, and AT&T Bell Labs, and technology executive positions at both start-ups and Fortune 500 companies, including FormFactor and Eaton.

    His teaching responsibilities include lecturing for Stanford’s Materials Science & Engineering department, and launching a Hydrogen Seminar Course in Energy Resources Engineering. He received his PhD degree from MIT and his MS degree from the University of California, Berkeley both in materials science and engineering, and his BS degree from the University of California, Berkeley in electrical engineering.

  • Christopher Chidsey

    Christopher Chidsey

    Associate Professor of Chemistry, Emeritus

    Current Research and Scholarly InterestsThe Chidsey group research interest is to build the chemical base for molecular electronics. To accomplish this, we synthesize the molecular and nanoscopic systems, build the analytical tools and develop the theoretical understanding with which to study electron transfer between electrodes and among redox species through insulating molecular bridges

  • Esther Choi

    Esther Choi

    Research Fellow, Precourt Institute for Energy

    BioEsther Choi is a Research Fellow at the Sustainable Finance Initiative (SFI) of the Precourt Institute for Energy at Stanford University. Her current research focuses on the role of blended finance in securing decarbonization pathways for emerging and developing countries. Her work has included topics such as policies and politics of climate change, green growth strategies and plans, and governance design for sustainable development.

    Esther holds a PhD in Environmental Science, Policy, and Management from the University of California, Berkeley and a Master’s in Environmental Management from Yale University. She has a variety of research and policy experience through her work at the Green Climate Fund, the World Bank, the Global Green Growth Institute, and KPMG Advisory Services.

  • Srabanti Chowdhury

    Srabanti Chowdhury

    Associate Professor of Electrical Engineering and Center Fellow, by courtesy, at the Precourt Institute for Energy

    Current Research and Scholarly InterestsWide bandap materials & devices for RF, Power and energy efficient electronics

  • William Chueh

    William Chueh

    Associate Professor of Materials Science and Engineering and Senior Fellow at the Precourt Institute for Energy

    BioThe availability of low-cost but intermittent renewable electricity (e.g., derived from solar and wind) underscores the grand challenge to store and dispatch energy so that it is available when and where it is needed. Redox-active materials promise the efficient transformation between electrical, chemical, and thermal energy, and are at the heart of carbon-neutral energy cycles. Understanding design rules that govern materials chemistry and architecture holds the key towards rationally optimizing technologies such as batteries, fuel cells, electrolyzers, and novel thermodynamic cycles. Electrochemical and chemical reactions involved in these technologies span diverse length and time scales, ranging from Ångströms to meters and from picoseconds to years. As such, establishing a unified, predictive framework has been a major challenge. The central question unifying our research is: “can we understand and engineer redox reactions at the levels of electrons, ions, molecules, particles and devices using a bottom-up approach?” Our approach integrates novel synthesis, fabrication, characterization, modeling and analytics to understand molecular pathways and interfacial structure, and to bridge fundamentals to energy storage and conversion technologies by establishing new design rules.

  • Bruce Clemens

    Bruce Clemens

    Walter B. Reinhold Professor in the School of Engineering, Emeritus

    BioClemens studies growth and structure of thin film, interface and nanostructured materials for catalytic, electronic and photovoltaic applications. He and his group investigate phase transitions and kinetics in nanostructured materials, and perform nanoparticle engineering for hydrogen storage and catalysis. Recently he and his collaborators have developed nano-portals for efficient injection of hydrogen into storage media, dual-phase nanoparticles for catalysis, amorphous metal electrodes for semiconductor devices, and a lift-off process for forming free-standing, single-crystal films of compound semiconductors.

  • Craig Criddle

    Craig Criddle

    Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsCriddle's interests include microbial biotechnology for the circular economy, including recovery of clean water from used water, renewable energy, valuable materials that can replace fossil-carbon derived materials. Current projects include energy-efficient anaerobic wastewater treatment technology, assessment of new treatment trains that yield high quality water; fossil carbon plastics biodegradation, and biotechnology for production of bioplastics that can replace fossil carbon plastics.

  • Yi Cui

    Yi Cui

    Director, Precourt Institute for Energy, Professor of Materials Science and Engineering, of Photon Science, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Chemistry

    BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.

  • Reinhold Dauskardt

    Reinhold Dauskardt

    Ruth G. and William K. Bowes Professor in the School of Engineering and Professor, by courtesy, of Surgery

    BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.

  • Jeffrey Decker

    Jeffrey Decker

    Program Director, Precourt Institute for Energy

    BioJeff Decker is the Program Director for Hacking for Defense and co-teaches Hacking for Defense. Jeff served in the U.S. Army as a 2nd Ranger Battalion light infantry squad leader in Iraq and Afghanistan. Following his service, he earned his doctorate in International Relations from Bond University in Australia, where he wrote his dissertation “Enhancing the Effectiveness of Private Military Contractors.” Jeff conducted research analysis in national security and international affairs at the RAND Corporation. Jeff’s current research focuses on defense innovation, dual-use technologies, and fostering defense-industry partnerships.

  • Carey deRafael

    Carey deRafael

    Director for Finance and Operations, Chief of Staff, Precourt Institute for Energy

    BioCarey deRafael oversees operations for the Precourt Institute for Energy and its related energy research centers. Carey works with the institute’s faculty co-directors and the other senior members to develop and implement strategic objectives. Carey represents the institute’s interests with other Stanford units and external organizations.

    Previously, Carey was the Director of Finance and Administration at Signature Therapeutics, a startup initially founded on a Stanford invention that evolved into a pharmaceutical company. He was part of the initial team and was responsible for developing, leading and managing the company’s accounting, administrative, human resources, information technology, and facilities departments. Prior to that, Carey was with Stanford’s Office of Technology Licensing transferring Stanford inventions and intellectual property to industry for commercial development.

    In addition to his professional association with Stanford, Carey is a Stanford alumnus. His wife, Bernadette, is the Director for Facilities and Hospitalities at the Stanford Graduate School of Business. He has supported the Stanford softball league with more than four hundred Stanford community players and serves as the league commissioner.

  • Noah Diffenbaugh

    Noah Diffenbaugh

    Kara J. Foundation Professor and Kimmelman Family Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsDr. Noah S. Diffenbaugh is an Editor of the peer-review journal Geophysical Research Letters, and a Lead Author for the Intergovernmental Panel on Climate Change (IPCC). He is a recipient of the James R. Holton Award from the American Geophysical Union, a CAREER award from the National Science Foundation, and a Terman Fellowship from Stanford University. He has also been recognized as a Kavli Fellow by the U.S. National Academy of Sciences, and as a Google Science Communication Fellow.

  • Jennifer Dionne

    Jennifer Dionne

    Senior Associate Vice Provost for Research Platforms/Shared Facilities, Associate Professor of Materials Science and Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    BioJennifer Dionne is the Senior Associate Vice Provost of Research Platforms/Shared Facilities and an Associate Professor of Materials Science and Engineering and of Radiology (by courtesy) at Stanford. Jen received her Ph.D. in Applied Physics at the California Institute of Technology, advised by Harry Atwater, and B.S. degrees in Physics and Systems & Electrical Engineering from Washington University in St. Louis. Prior to joining Stanford, she served as a postdoctoral researcher in Chemistry at Berkeley, advised by Paul Alivisatos. Jen's research develops nanophotonic methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her work has been recognized with the Alan T. Waterman Award (2019), an NIH Director's New Innovator Award (2019), a Moore Inventor Fellowship (2017), the Materials Research Society Young Investigator Award (2017), Adolph Lomb Medal (2016), Sloan Foundation Fellowship (2015), and the Presidential Early Career Award for Scientists and Engineers (2014), and was featured on Oprah’s list of “50 Things that will make you say ‘Wow!'"

  • Louis Durlofsky

    Louis Durlofsky

    Otto N. Miller Professor in Earth Sciences

    Current Research and Scholarly InterestsGeneral reservoir simulation, optimization, reduced-order modeling, upscaling, flow in fractured systems, history matching, CO2 sequestration, energy systems optimization

  • Abbas El Gamal

    Abbas El Gamal

    Hitachi America Professor in the School of Engineering

    BioAbbas El Gamal is the Hitachi America Professor in the School of Engineering and Professor in the Department of Electrical Engineering at Stanford University. He received his B.Sc. Honors degree from Cairo University in 1972, and his M.S. in Statistics and Ph.D. in Electrical Engineering both from Stanford University in 1977 and 1978, respectively. From 1978 to 1980, he was an Assistant Professor of Electrical Engineering at USC. From 2003 to 2012, he was the Director of the Information Systems Laboratory at Stanford University. From 2012 to 2017 he was Chair of the Department of Electrical Engineering at Stanford University. His research contributions have been in network information theory, FPGAs, and digital imaging devices and systems. He has authored or coauthored over 230 papers and holds 35 patents in these areas. He is coauthor of the book Network Information Theory (Cambridge Press 2011). He has received several honors and awards for his research contributions, including the 2016 Richard W. Hamming Medal, the 2012 Claude E. Shannon Award, and the 2004 INFOCOM Paper Award. He is a member of the U.S. National Academy of Engineering and a Fellow of the IEEE. He has co-founded and served on the board of directors and advisory boards of several semiconductor and biotechnology startup companies.

  • W Gary Ernst

    W Gary Ernst

    The Benjamin M. Page Professor in Earth Sciences, Emeritus

    Current Research and Scholarly InterestsPetrology/geochemistry and plate tectonics of Circumpacific and Alpine mobile belts; ultrahigh-pressure metamorphism in Eurasia; geology of the California Coast Ranges, the cental Klamath Mountains, and White-Inyo Range; geobotany and remote sensing of the American Southwest; mineralogy and human health.

  • Shanhui Fan

    Shanhui Fan

    Director, Edward L. Ginzton Laboratory, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Applied Physics

    BioFan's research involves the theory and simulations of photonic and solid-state materials and devices; photonic crystals; nano-scale photonic devices and plasmonics; quantum optics; computational electromagnetics; parallel scientific computing.

  • Kate Gibson

    Kate Gibson

    Program Manager, Precourt Institute for Energy

    Current Role at StanfordProgram Manager, Precourt Institute for Energy

  • Mark Golden

    Mark Golden

    Director of Communications, Precourt Institute for Energy

    BioMark Golden's principal responsibility is to inform the public about energy research and education at Stanford through articles, press releases, the Internet, printed materials and presentation graphics, and by aiding reporters writing about energy. His focus is on economic and policy research. Mark began work at Stanford in 2011, when he joined the Precourt Institute's communications team.

    Before coming to Stanford, Mark taught in the San Francisco public schools for several years, and he was a reporter for Dow Jones & Co. for 10 years, primarily covering the U.S. natural gas and power industries. Previously he worked in Kiev, Ukraine, editing a weekly news magazine on that country's economic and political development. He also worked for Columbia University writing on public health research.

  • Kenneth Goodson

    Kenneth Goodson

    Davies Family Provostial Professor, Senior Associate Dean for Faculty and Academic Affairs and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.

  • Lawrence Goulder

    Lawrence Goulder

    Shuzo Nishihara Professor in Environmental and Resource Economics and Senior Fellow at the Stanford Institute for Economic Policy Research

    Current Research and Scholarly InterestsGoulder's research examines the environmental and economic impacts of environmental policies in the U.S. and China, with a focus on policies to deal with climate change and air pollution. His current research focuses on the evaluation of proposed U.S. federal level climate change policies and China's emerging nationwide emissions trading program to reduce carbon dioxide emissions.

    His work also explores the sustainability of natural resources and well-being in several countries.

    Results from his work have been published in academic journal articles as well as in the book, Confronting the Climate Challenge: Options for US Policy, which was published by Columbia University Press in 2017.

    His work often employs a general equilibrium analytical framework that integrates the economy and the environment and links the activities of government, industry, and households. The research considers both the aggregate benefits and costs of various policies as well as the distribution of policy impacts across industries, income groups, and generations. Some of his work involves collaborations with climate scientists, biologists, and engineers.

    Goulder has conducted analyses for several government agencies, business groups, and environmental organizations, and has served on advisory committees to the U.S. Environmental Protection Agency and the California Air Resources Board.

  • Diana Gragg

    Diana Gragg

    Managing Director, Precourt Institute for Energy

    BioAn instructor on the teaching team for Understanding Energy, offered Fall, Spring and Summer:
    CEE 107A/207A, EARTHSYS 103 Understanding Energy
    CEE 107S/207S Understanding Energy: Essentials
    https://energy.stanford.edu/understanding-energy

    Stanford liaison for Winter quarter (spring break) course at Rocky Mountain Institute:
    CEE 107R/207R E^3: Extreme Energy Efficiency
    https://web.stanford.edu/class/cee207r/index.htm

    Also serves as an advisor to Civil and Environmental Engineering Atmosphere/Energy students and as a pre-major advisor.

  • Ronald Hanson

    Ronald Hanson

    Clarence J. and Patricia R. Woodard Professor of Mechanical Engineering

    Current Research and Scholarly InterestsProfessor Hanson has been an international leader in the development of laser-based diagnostic methods for combustion and propulsion, and in the development of modern shock tube methods for accurate determination of chemical reaction rate parameters needed for modeling combustion and propulsion systems. He and his students have made several pioneering contributions that have impacted the pace of propulsion research and development worldwide.

  • James Harris

    James Harris

    James and Elenor Chesebrough Professor in the School of Engineering, Emeritus

    BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    Research
    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    Teaching
    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Siegfried Hecker

    Siegfried Hecker

    Professor (Research) of Management Science and Engineering and Senior Fellow at the Freeman Spogli Institute for International Studies, Emeritus

    Current Research and Scholarly Interestsplutonium science; nuclear weapons stockpile stewardship; cooperative threat reduction

  • Sarah Heilshorn

    Sarah Heilshorn

    Professor of Materials Science and Engineering and, by courtesy, of Bioengineering and of Chemical Engineering

    Current Research and Scholarly InterestsProtein engineering
    Tissue engineering
    Regenerative medicine
    Biomaterials

  • Thomas Heller

    Thomas Heller

    Lewis Talbot and Nadine Hearn Shelton Professor of International Legal Studies, Emeritus

    BioAn expert in international law and legal institutions, Thomas C. Heller has focused his research on the rule of law, international climate control, global energy use, and the interaction of government and nongovernmental organizations in establishing legal structures in the developing world. He has created innovative courses on the role of law in transitional and developing economies, as well as the comparative study of law in developed economies. He has co-directed the law school’s Rule of Law Program, as well as the Stanford Program in International and Comparative Law. Professor Heller has been a visiting professor at the European University Institute, Catholic University of Louvain, and Hong Kong University, and has served as the deputy director of the Freeman Spogli Institute for International Studies at Stanford University, where he is now a senior fellow.

    Professor Heller is also a senior fellow (by courtesy) at the Woods Institute for the Environment. Before joining the Stanford Law School faculty in 1979, he was a professor of law at the University of Wisconsin Law School and an attorney-advisor to the governments of Chile and Colombia.

  • Mark Horowitz

    Mark Horowitz

    Yahoo! Founders Professor in the School of Engineering and Professor of Computer Science

    BioProfessor Horowitz initially focused on designing high-performance digital systems by combining work in computer-aided design tools, circuit design, and system architecture. During this time, he built a number of early RISC microprocessors, and contributed to the design of early distributed shared memory multiprocessors. In 1990, Dr. Horowitz took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth memory interface technology. After returning in 1991, his research group pioneered many innovations in high-speed link design, and many of today’s high speed link designs are designed by his former students or colleagues from Rambus.

    In the 2000s he started a long collaboration with Prof. Levoy on computation photography, that included work that led to the Lytro camera. Dr. Horowitz's current research interests are quite broad and span using EE and CS analysis methods to problems in neuro and molecular biology to creating new agile design methodologies for analog and digital VLSI circuits. He remains interested in learning new things, and building interdisciplinary teams.

  • Robert Huggins

    Robert Huggins

    Professor of Materials Science and Engineering, Emeritus

    BioProfessor Huggins joined Stanford as Assistant Professor in 1954, was promoted to Associate Professor in 1958, and to Professor in 1962.

    His research activities have included studies of imperfections in crystals, solid-state reaction kinetics, ferromagnetism, mechanical behavior of solids, crystal growth, and a wide variety of topics in physical metallurgy, ceramics, solid state chemistry and electrochemistry. Primary attention has recently been focused on the development of understanding of solid state ionic phenomena involving solid electrolytes and mixed ionic-electronic conducting materials containing atomic or ionic species such as lithium, sodium or oxygen with unusually high mobility, as well as their use in novel battery and fuel cell systems, electrochromic optical devices, sensors, and in enhanced heterogeneous catalysis. He was also involved in the development of the understanding of the key role played by the phase composition and oxygen stoichiometry in determining the properties of high temperature oxide superconductors.

    Topics of particular recent interest have been related to energy conversion and storage, including hydrogen transport and hydride formation in metals, alloys and intermetallic compounds, and various aspects of materials and phenomena related to advanced lithium batteries.

    He has over 400 professional publications, including three books; "Advanced Batteries", published by Springer in 2009, "Energy Storage", published by Springer in 2010, and Energy Storage, Second Edition in 2016.

  • Hillard Huntington

    Hillard Huntington

    Executive Director, Energy Modeling Forum
    Hourly Researcher, Management Science and Engineering - Energy Modeling Forum
    Staff, Management Science and Engineering - Energy Modeling Forum

    BioHuntington is Executive Director of Stanford University's Energy Modeling Forum, where he conducts studies to improve the usefulness of models for understanding energy and environmental problems. In 2005 the Forum received the prestigious Adelman-Frankel Award from the International Association for Energy Economics for its "unique and innovative contribution to the field of energy economics."

    His current research interests are modeling energy security, energy price shocks, energy market impacts of environmental policies, and international natural gas and LNG markets. In 2002 he won the Best Paper Award from the Energy Journal for a paper co-authored with Professor Dermot Gately of New York University.

    He is a Senior Fellow and a past-President of the United States Association for Energy Economics and a member of the National Petroleum Council. He was also Vice-President for Publications for the International Association for Energy Economics and a member of the American Statistical Association's Committee on Energy Data. Previously, he served on a joint USA-Russian National Academy of Sciences Panel on energy conservation research and development.

    Huntington has testified before the U.S. Senate Committee on Foreign Relations and the California Energy Commission.

    Prior to coming to Stanford in 1980, he held positions in the corporate and government sectors with Data Resources Inc., the U.S. Federal Energy Administration, and the Public Utilities Authority in Monrovia, Liberia (as a U.S. Peace Corps Volunteer).

  • Gianluca Iaccarino

    Gianluca Iaccarino

    Professor of Mechanical Engineering and Director, Institute for Computational and Mathematical Engineering

    Current Research and Scholarly InterestsComputing and data for energy, health and engineering

    Challenges in energy sciences, green technology, transportation, and in general, engineering design and prototyping are routinely tackled using numerical simulations and physical testing. Computations barely feasible two decades ago on the largest available supercomputers, have now become routine using turnkey commercial software running on a laptop. Demands on the analysis of new engineering systems are becoming more complex and multidisciplinary in nature, but exascale-ready computers are on the horizon. What will be the next frontier? Can we channel this enormous power into an increased ability to simulate and, ultimately, to predict, design and control? In my opinion two roadblocks loom ahead: the development of credible models for increasingly complex multi-disciplinary engineering applications and the design of algorithms and computational strategies to cope with real-world uncertainty.
    My research objective is to pursue concerted innovations in physical modeling, numerical analysis, data fusion, probabilistic methods, optimization and scientific computing to fundamentally change our present approach to engineering simulations relevant to broad areas of fluid mechanics, transport phenomena and energy systems. The key realization is that computational engineering has largely ignored natural variability, lack of knowledge and randomness, targeting an idealized deterministic world. Embracing stochastic scientific computing and data/algorithms fusion will enable us to minimize the impact of uncertainties by designing control and optimization strategies that are robust and adaptive. This goal can only be accomplished by developing innovative computational algorithms and new, physics-based models that explicitly represent the effect of limited knowledge on the quantity of interest.

    Multidisciplinary Teaching

    I consider the classical boundaries between disciplines outdated and counterproductive in seeking innovative solutions to real-world problems. The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system requires the analysis of their flow, thermal, and structural characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing in multiphysics settings. Virtual prototyping is a staple of modern engineering practice! I have designed a new undergraduate course as an introduction to Computational Engineering, covering theory and practice across multidisciplanary applications. The emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal/structural problems, the course develops the essential concepts of Verification and Validation for engineering simulations, providing the basis for assessing the accuracy of the results.

  • Rob Jackson

    Rob Jackson

    Michelle and Kevin Douglas Provostial Professor and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy

    BioRob Jackson and his lab examine the many ways people affect the Earth. They seek basic scientific knowledge and use it to help shape policies and reduce the environmental footprint of global warming, energy extraction, and other issues. They're currently examining the effects of climate change and droughts on forest mortality and grassland ecosystems. They are also working to measure and reduce greenhouse gas emissions through the Global Carbon Project (globalcarbonproject.org), which Jackson chairs; examples of new research Rob leads include establishing a global network of methane tower measurements at more than 80 sites worldwide and measuring and reducing methane emissions from oil and gas wells, city streets, and homes and buildings.

    As an author and photographer, Rob has published a trade book about the environment (The Earth Remains Forever, University of Texas Press), two books of children’s poems, Animal Mischief and Weekend Mischief (Highlights Magazine and Boyds Mills Press), and recent or forthcoming poems in the journals Southwest Review, Cortland Review, Cold Mountain Review, Atlanta Review, LitHub, and more. His photographs have appeared in many media outlets, including the NY Times, Washington Post, USA Today, US News and World Report, Science, Nature, and National Geographic News.

    Rob is a current Guggenheim Fellow and sabbatical visitor in the Center for Advanced Study in the Behavioral Sciences. He is also a Fellow in the American Association for the Advancement of Science, American Geophysical Union, and Ecological Society of America. He received a Presidential Early Career Award in Science and Engineering from the National Science Foundation, awarded at the White House.