Precourt Institute for Energy


Showing 41-60 of 122 Results

  • Kenneth Goodson

    Kenneth Goodson

    Davies Family Provostial Professor, Senior Associate Dean for Faculty and Academic Affairs and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.

  • Lawrence Goulder

    Lawrence Goulder

    Shuzo Nishihara Professor in Environmental and Resource Economics and Senior Fellow at the Stanford Institute for Economic Policy Research
    On Leave from 10/01/2020 To 12/31/2020

    Current Research and Scholarly InterestsGoulder's research examines the environmental and economic impacts of environmental policies in the U.S. and China, with a focus on policies to deal with climate change and air pollution. His current research focuses on the evaluation of proposed U.S. federal level climate change policies and China's emerging nationwide emissions trading program to reduce carbon dioxide emissions.

    His work also explores the sustainability of natural resources and well-being in several countries.

    Results from his work have been published in academic journal articles as well as in the book, Confronting the Climate Challenge: Options for US Policy, which was published by Columbia University Press in 2017.

    His work often employs a general equilibrium analytical framework that integrates the economy and the environment and links the activities of government, industry, and households. The research considers both the aggregate benefits and costs of various policies as well as the distribution of policy impacts across industries, income groups, and generations. Some of his work involves collaborations with climate scientists, biologists, and engineers.

    Goulder has conducted analyses for several government agencies, business groups, and environmental organizations, and has served on advisory committees to the U.S. Environmental Protection Agency and the California Air Resources Board.

  • Diana Gragg

    Diana Gragg

    Managing Director, Precourt Institute for Energy

    BioAn instructor on the teaching team for Understanding Energy, offered Fall, Spring and Summer:
    CEE 107A/207A, EARTHSYS 103 Understanding Energy
    CEE 107S/207S Understanding Energy: Essentials
    https://energy.stanford.edu/understanding-energy

    Stanford liaison for Winter quarter (spring break) course at Rocky Mountain Institute:
    CEE 107R/207R E^3: Extreme Energy Efficiency
    https://web.stanford.edu/class/cee207r/index.htm

    Also serves as an advisor to Civil and Environmental Engineering Atmosphere/Energy students and as a pre-major advisor.

  • Ronald Hanson

    Ronald Hanson

    Clarence J. and Patricia R. Woodard Professor of Mechanical Engineering

    Current Research and Scholarly InterestsProfessor Hanson has been an international leader in the development of laser-based diagnostic methods for combustion and propulsion, and in the development of modern shock tube methods for accurate determination of chemical reaction rate parameters needed for modeling combustion and propulsion systems. He and his students have made several pioneering contributions that have impacted the pace of propulsion research and development worldwide.

  • James Harris

    James Harris

    James and Elenor Chesebrough Professor in the School of Engineering, Emeritus

    BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    Research
    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    Teaching
    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Siegfried Hecker

    Siegfried Hecker

    Professor (Research) of Management Science and Engineering and Senior Fellow at the Freeman Spogli Institute for International Studies, Emeritus

    Current Research and Scholarly Interestsplutonium science; nuclear weapons stockpile stewardship; cooperative threat reduction

  • Sarah Heilshorn

    Sarah Heilshorn

    Professor of Materials Science and Engineering and, by courtesy, of Bioengineering and of Chemical Engineering

    Current Research and Scholarly InterestsProtein engineering
    Tissue engineering
    Regenerative medicine
    Biomaterials

  • Thomas Heller

    Thomas Heller

    Lewis Talbot and Nadine Hearn Shelton Professor of International Legal Studies, Emeritus

    BioAn expert in international law and legal institutions, Thomas C. Heller has focused his research on the rule of law, international climate control, global energy use, and the interaction of government and nongovernmental organizations in establishing legal structures in the developing world. He has created innovative courses on the role of law in transitional and developing economies, as well as the comparative study of law in developed economies. He has co-directed the law school’s Rule of Law Program, as well as the Stanford Program in International and Comparative Law. Professor Heller has been a visiting professor at the European University Institute, Catholic University of Louvain, and Hong Kong University, and has served as the deputy director of the Freeman Spogli Institute for International Studies at Stanford University, where he is now a senior fellow.

    Professor Heller is also a senior fellow (by courtesy) at the Woods Institute for the Environment. Before joining the Stanford Law School faculty in 1979, he was a professor of law at the University of Wisconsin Law School and an attorney-advisor to the governments of Chile and Colombia.

  • Mark Horowitz

    Mark Horowitz

    Yahoo! Founders Professor in the School of Engineering and Professor of Computer Science

    BioProfessor Horowitz initially focused on designing high-performance digital systems by combining work in computer-aided design tools, circuit design, and system architecture. During this time, he built a number of early RISC microprocessors, and contributed to the design of early distributed shared memory multiprocessors. In 1990, Dr. Horowitz took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth memory interface technology. After returning in 1991, he research group pioneered many innovations in high-speed link design, and many of today’s high speed link designs are designed by his former students or colleagues from Rambus.

    In the 2000s he started a long collaboration with Prof Levoy on computation photography, that included work that led to the Lytro camera. Dr. Horowitz's current research interests are quite broad and span using EE and CS analysis methods to problems in neuro and molecular biology to creating new agile design methodologies for analog and digital VLSI circuits. He remains interested in learning new things, and building interdisciplinary teams.

  • Robert Huggins

    Robert Huggins

    Professor of Materials Science and Engineering, Emeritus

    BioProfessor Huggins joined Stanford as Assistant Professor in 1954, was promoted to Associate Professor in 1958, and to Professor in 1962.

    His research activities have included studies of imperfections in crystals, solid-state reaction kinetics, ferromagnetism, mechanical behavior of solids, crystal growth, and a wide variety of topics in physical metallurgy, ceramics, solid state chemistry and electrochemistry. Primary attention has recently been focused on the development of understanding of solid state ionic phenomena involving solid electrolytes and mixed ionic-electronic conducting materials containing atomic or ionic species such as lithium, sodium or oxygen with unusually high mobility, as well as their use in novel battery and fuel cell systems, electrochromic optical devices, sensors, and in enhanced heterogeneous catalysis. He was also involved in the development of the understanding of the key role played by the phase composition and oxygen stoichiometry in determining the properties of high temperature oxide superconductors.

    Topics of particular recent interest have been related to energy conversion and storage, including hydrogen transport and hydride formation in metals, alloys and intermetallic compounds, and various aspects of materials and phenomena related to advanced lithium batteries.

    He has over 400 professional publications, including three books; "Advanced Batteries", published by Springer in 2009, "Energy Storage", published by Springer in 2010, and Energy Storage, Second Edition in 2016.

  • Hillard Huntington

    Hillard Huntington

    Executive Director, Energy Modeling Forum
    Hourly Researcher, Management Science and Engineering - Energy Modeling Forum
    Staff, Management Science and Engineering - Energy Modeling Forum

    BioHuntington is Executive Director of Stanford University's Energy Modeling Forum, where he conducts studies to improve the usefulness of models for understanding energy and environmental problems. In 2005 the Forum received the prestigious Adelman-Frankel Award from the International Association for Energy Economics for its "unique and innovative contribution to the field of energy economics."

    His current research interests are modeling energy security, energy price shocks, energy market impacts of environmental policies, and international natural gas and LNG markets. In 2002 he won the Best Paper Award from the Energy Journal for a paper co-authored with Professor Dermot Gately of New York University.

    He is a Senior Fellow and a past-President of the United States Association for Energy Economics and a member of the National Petroleum Council. He was also Vice-President for Publications for the International Association for Energy Economics and a member of the American Statistical Association's Committee on Energy Data. Previously, he served on a joint USA-Russian National Academy of Sciences Panel on energy conservation research and development.

    Huntington has testified before the U.S. Senate Committee on Foreign Relations and the California Energy Commission.

    Prior to coming to Stanford in 1980, he held positions in the corporate and government sectors with Data Resources Inc., the U.S. Federal Energy Administration, and the Public Utilities Authority in Monrovia, Liberia (as a U.S. Peace Corps Volunteer).

  • Gianluca Iaccarino

    Gianluca Iaccarino

    Professor of Mechanical Engineering and Director, Institute for Computational and Mathematical Engineering

    Current Research and Scholarly InterestsComputing and data for energy, health and engineering

    Challenges in energy sciences, green technology, transportation, and in general, engineering design and prototyping are routinely tackled using numerical simulations and physical testing. Computations barely feasible two decades ago on the largest available supercomputers, have now become routine using turnkey commercial software running on a laptop. Demands on the analysis of new engineering systems are becoming more complex and multidisciplinary in nature, but exascale-ready computers are on the horizon. What will be the next frontier? Can we channel this enormous power into an increased ability to simulate and, ultimately, to predict, design and control? In my opinion two roadblocks loom ahead: the development of credible models for increasingly complex multi-disciplinary engineering applications and the design of algorithms and computational strategies to cope with real-world uncertainty.
    My research objective is to pursue concerted innovations in physical modeling, numerical analysis, data fusion, probabilistic methods, optimization and scientific computing to fundamentally change our present approach to engineering simulations relevant to broad areas of fluid mechanics, transport phenomena and energy systems. The key realization is that computational engineering has largely ignored natural variability, lack of knowledge and randomness, targeting an idealized deterministic world. Embracing stochastic scientific computing and data/algorithms fusion will enable us to minimize the impact of uncertainties by designing control and optimization strategies that are robust and adaptive. This goal can only be accomplished by developing innovative computational algorithms and new, physics-based models that explicitly represent the effect of limited knowledge on the quantity of interest.

    Multidisciplinary Teaching

    I consider the classical boundaries between disciplines outdated and counterproductive in seeking innovative solutions to real-world problems. The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system requires the analysis of their flow, thermal, and structural characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing in multiphysics settings. Virtual prototyping is a staple of modern engineering practice! I have designed a new undergraduate course as an introduction to Computational Engineering, covering theory and practice across multidisciplanary applications. The emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal/structural problems, the course develops the essential concepts of Verification and Validation for engineering simulations, providing the basis for assessing the accuracy of the results.

  • Rob Jackson

    Rob Jackson

    Michelle and Kevin Douglas Provostial Professor and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy

    BioRob Jackson and his lab examine the many ways people affect the Earth. They seek basic scientific knowledge and use it to help shape policies and reduce the environmental footprint of global warming, energy extraction, and other issues. They're currently examining the effects of climate change and droughts on forest mortality and grassland ecosystems. They are also working to measure and reduce greenhouse gas emissions through the Global Carbon Project (globalcarbonproject.org), which Jackson chairs; examples of new research Rob leads include establishing a global network of methane tower measurements at more than 80 sites worldwide and measuring and reducing methane emissions from oil and gas wells, city streets, and homes and buildings.

    As an author and photographer, Rob has published a trade book about the environment (The Earth Remains Forever, University of Texas Press), two books of children’s poems, Animal Mischief and Weekend Mischief (Highlights Magazine and Boyds Mills Press), and recent or forthcoming poems in the journals Southwest Review, Cortland Review, Cold Mountain Review, Atlanta Review, LitHub, and more. His photographs have appeared in many media outlets, including the NY Times, Washington Post, USA Today, US News and World Report, Science, Nature, and National Geographic News.

    Rob is a current Guggenheim Fellow and sabbatical visitor in the Center for Advanced Study in the Behavioral Sciences. He is also a Fellow in the American Association for the Advancement of Science, American Geophysical Union, and Ecological Society of America. He received a Presidential Early Career Award in Science and Engineering from the National Science Foundation, awarded at the White House.

  • Thomas Jaramillo

    Thomas Jaramillo

    Associate Professor of Chemical Engineering, of Photon Science and Senior Fellow at the Precourt Institute for Energy

    BioRecent years have seen unprecedented motivation for the emergence of new energy technologies. Global dependence on fossil fuels, however, will persist until alternate technologies can compete economically. We must develop means to produce energy (or energy carriers) from renewable sources and then convert them to work as efficiently and cleanly as possible. Catalysis is energy conversion, and the Jaramillo laboratory focuses on fundamental catalytic processes occurring on solid-state surfaces in both the production and consumption of energy. Chemical-to-electrical and electrical-to-chemical energy conversion are at the core of the research. Nanoparticles, metals, alloys, sulfides, nitrides, carbides, phosphides, oxides, and biomimetic organo-metallic complexes comprise the toolkit of materials that can help change the energy landscape. Tailoring catalyst surfaces to fit the chemistry is our primary challenge.

  • Ramesh Johari

    Ramesh Johari

    Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering and of Computer Science

    BioJohari is broadly interested in the design, economic analysis, and operation of online platforms, as well as statistical and machine learning techniques used by these platforms (such as search, recommendation, matching, and pricing algorithms).

  • Leigh Johnson

    Leigh Johnson

    Academic Research & Program Officer, Precourt Institute for Energy

    BioLeigh works closely with the faculty co-directors and staff to implement the institute’s vision and strategic direction. She manages a team who supports the energy research, education and outreach mission of the institute and Stanford broadly. The institute serves as the hub for over 200 faculty across the university who conduct energy research, students from Stanford’s seven schools, and staff from energy programs and centers across Stanford. Outreach activities engage stakeholders from industry, government and non-governmental organizations, academia and the Stanford alumni community in an energy ecosystem. Activities that serve this broad constituency include several annual conferences, topical workshops, student programs and the weekly Stanford Energy Seminar. The team covers energy news and information across the university through articles in Stanford Report, the institute's website, the monthly Stanford Energy News and social media.

    Leigh started at Stanford in 2003 as project development director for the Provost Committee for the Environment, and as the first employee she served as associate director of programs at the Stanford Woods Institute for the Environment where she worked for seven years on a wide-range of entrepreneurial and programmatic activities. Prior to joining Stanford, Leigh worked in public relations at Regis McKenna Inc. and sales at IBM. Non-profit commitments have included: president of the Las Lomitas Education Foundation, president of the Ragazzi Boys Chorus Board of Directors, and docent for Y2E2 building tours. Leigh holds an A.B. degree in mathematics from Dartmouth College.

  • Arpita Kalra

    Arpita Kalra

    Program Manager, Precourt Institute for Energy

    BioArpita Kalra is a program manager at the Precourt Institute for Energy. In this role she supports the Institute's outreach efforts and manages current and upcoming external engagement programs. Prior to Stanford, she worked in the advertising industry as a media planner and buyer where she developed and executed marketing campaigns across print, electronic and social media. Arpita holds a masters in Marketing Communications from the Mudra Institute of Communications, Ahmedabad (MICA) in India and a bachelors in Statistics from Delhi University.

  • Matthew Kanan

    Matthew Kanan

    Associate Professor of Chemistry and Senior Fellow at the Precourt Institute for Energy

    BioAssociate Professor of Chemistry Matthew Kanan develops new catalysts and chemical reactions for applications in renewable energy conversion and CO2 utilization. His group at Stanford University has recently developed a novel method to create plastic from carbon dioxide and inedible plant material rather than petroleum products, and pioneered the study of “defect-rich” heterogeneous electro-catalysts for converting carbon dioxide and carbon monoxide to liquid fuel.

    Matthew Kanan completed undergraduate study in chemistry at Rice University (B.A. 2000 Summa Cum Laude, Phi Beta Kappa). During doctoral research in organic chemistry at Harvard University (Ph.D. 2005), he developed a novel method for using DNA to discover new chemical reactions. He then moved into inorganic chemistry for his postdoctoral studies as a National Institutes of Health Postdoctoral Research Fellow at the Massachusetts Institute of Technology, where he discovered a water oxidation catalyst that operates in neutral water. He joined the Stanford Chemistry Department faculty in 2009 to continue research into energy-related catalysis and reactions. His research and teaching have already been recognized in selection as one of Chemistry & Engineering News’ first annual Talented 12, the Camille Dreyfus Teacher-Scholar Award, Eli Lilly New Faculty Award, and recognition as a Camille and Henry Dreyfus Environmental Mentor, among other honors.

    The Kanan Lab addresses fundamental challenges in catalysis and synthesis with an emphasis on enabling new technologies for scalable CO2 utilization. The interdisciplinary effort spans organic synthesis, materials chemistry and electrochemistry.

    One of the greatest challenges of the 21st century is to transition to an energy economy with ultra-low greenhouse gas emissions without compromising quality of life for a growing population. The Kanan Lab aims to help enable this transition by developing catalysts and chemical reactions that recycle CO2 into fuels and commodity chemicals using renewable energy sources. To be implemented on a substantial scale, these methods must ultimately be competitive with fossil fuels and petrochemicals. With this requirement in mind, the group focuses on the fundamental chemical challenge of making carbon–carbon (C–C) bonds because multi-carbon compounds have higher energy density, greater value, and more diverse applications that one-carbon compounds. Both electrochemical and chemical methods are being pursued. For electrochemical conversion, the group studies how defects known as grain boundaries can be exploited to improve CO2/CO electro-reduction catalysis. Recent work has unveiled quantitative correlations between grain boundaries and catalytic activity, establishing a new design principle for electrocatalysis, and developed grain boundary-rich copper catalysts with unparalleled activity for converting carbon monoxide to liquid fuel. For chemical CO2 conversion, the group is developing C–H carboxylation and CO2 hydrogenation reactions that are promoted by simple carbonate salts. These reactions provide a way to make C–C bonds between un-activated substrates and CO2 without resorting to energy-intensive and hazardous reagents. Among numerous applications, carbonate-promoted carboxylation enables the synthesis of a monomer used to make polyester plastic from CO2 and a feedstock derived from agricultural waste.

    In addition to CO2 chemistry, the Kanan group is pursuing new strategies to control selectivity in molecular catalysis for fine chemical synthesis. Of particular interest in the use of electrostatic interactions to discriminate between competing reaction pathways based on their charge distributions. This effort uses ion pairing or interfaces to control the local electrostatic environment in which a reaction takes place. The group has recently shown that local electric fields can control regioselectivity in isomerization reactions catalyzed by gold complexes.

  • Leonid Kazovsky

    Leonid Kazovsky

    Professor (Research) of Electrical Engineering, Emeritus

    BioProfessor Kazovsky and his research group are investigating green energy-efficient networks. The focus of their research is on access and in-building networks and on hybrid optical / wireless networks. Prof. Kazovsky's research group is also conducting research on next-generation Internet architectures and novel zero-energy photonic components.