Sarafan ChEM-H


Showing 1-9 of 9 Results

  • Jin Billy Li

    Jin Billy Li

    Associate Professor of Genetics

    Current Research and Scholarly InterestsThe Li Lab is primarily interested in RNA editing mediated by ADAR enzymes. We co-discovered that the major function of RNA editing is to label endogenous dsRNAs as "self" to avoid being recognized as "non-self" by MDA5, a host innate immune dsRNA sensor, leading us to pursue therapeutic applications in cancer, autoimmune diseases, and viral infection. The other major direction of the lab is to develop technologies to harness endogenous ADAR enzymes for site-specific transcriptome engineering.

  • Lingyin Li

    Lingyin Li

    Associate Professor of Biochemistry

    BioDr. Li is an associate professor in the Biochemistry Department and ChEM-H Institute at Stanford since 2015. Her lab works on understanding biochemical mechanisms of innate immunity and harnessing it to treat cancer. She majored in chemistry at University of Science and Technology of China and graduated with a B. En in 2003. She then trained with Dr. Laura Kiessling, a pioneer in chemical biology, at University of Wisconsin-Madison and graduated with a Ph.D in chemistry in 2010. She obtained her postdoctoral training with Dr. Timothy Mitchison at Harvard Medical School, who introduced her to the field of chemical immunology.

  • Michael Lin

    Michael Lin

    Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.

  • Kyle Loh

    Kyle Loh

    Assistant Professor of Developmental Biology (Stem Cell)

    Current Research and Scholarly InterestsWe have developed a strategy to generate fairly pure populations of various human tissue progenitors in a dish from embryonic stem cells (ESCs). We have delineated the sequential lineage steps through which ESCs diversify into various tissues, and in so doing, developed methods to exclusively induce certain fates at the expense of others. The resultant pure populations of tissue progenitors are the fundamental building blocks for regenerative medicine.

  • Jonathan Z. Long

    Jonathan Z. Long

    Assistant Professor of Pathology

    BioDr. Jonathan Long is an Assistant Professor of Pathology and an Institute Scholar of Stanford ChEM-H (Chemistry, Engineering & Medicine for Human Health). Prior to arriving to Stanford in 2018, Dr. Long completed his Ph.D. in Chemistry at Scripps Research with Benjamin F. Cravatt and his postdoctoral work at Harvard Medical School/Dana-Farber Cancer Institute with Bruce M. Spiegelman. His contributions in the areas of lipid biochemistry and energy homeostasis have been recognized by numerous awards from the National Institutes of Health and the American Diabetes Association. At Stanford, the Long laboratory studies signaling pathways in mammalian energy metabolism. The long-term goal of this work is to discover new molecules and pathways that can be translated into therapeutic opportunities for obesity, metabolic disease, and other age-associated chronic diseases.

  • Sharon R. Long

    Sharon R. Long

    William C. Steere, Jr. - Pfizer Inc. Professor of Biological Sciences and Professor, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsBiochemistry, genetics and cell biology of plant-bacterial symbiosis

  • Anson Lowe

    Anson Lowe

    Associate Professor of Medicine (Gastroenterology and Hepatology), Emeritus

    Current Research and Scholarly InterestsThe laboratory is focused on the relationship between injury, wound healing, and cancer. Esophageal, gastric, and pancreatic cancers are a focus. We are particularly interested in the regulation of cell signaling by EGFR, the EGF receptor. In addition to cancer pathogenesis, active projects include the development of new diagnostic assays and drugs.

  • Sydney X. Lu

    Sydney X. Lu

    Assistant Professor of Medicine (Hematology)

    BioSydney Lu is a hematologist and medical oncologist in the Division of Hematology, Department of Medicine, studying novel therapeutics for challenging cancers and immune disorders.
    Sydney's research career started with graduate studies in the laboratory of Dr. Marcel van den Brink at Memorial Sloan Kettering Cancer Center (MSKCC) studying the biology of pathologic donor T cells during graft-versus-host-disease and beneficial T cells mediating graft-versus-tumor effects after allogeneic bone marrow transplant, as well as the role of the thymus in regenerating healthy and protective donor-derived T cells post-transplant.
    The direct relevance of these cellular therapies and their immediate translational applicability to patients inspired him to attend medical school at Stanford and further training in hematology and medical oncology at Memorial Sloan Kettering. There, as a fellow and junior faculty member, he studied disordered RNA splicing in cancer in the laboratory of Dr. Omar Abdel-Wahab, with the goal of developing novel drugs targeting RNA splicing. This work has led to observations that targeted degradation of the RNA binding protein RBM39 may be a feasible therapeutic for the treatment of myeloid cancers bearing RNA splicing factor mutations and that pharmacologic RNA splicing inhibition can generate MHC I-presented peptide neoantigens which are exploitable for immunotherapy in model systems.

    Sydney's laboratory is broadly interested in studying RNA processing and splicing in the contexts of:
    1) normal and pathologic immunity and immunotherapy
    2) cancer biology
    3) normal and malignant hematopoiesis

  • Liqun Luo

    Liqun Luo

    Ann and Bill Swindells Professor and Professor, by courtesy, of Neurobiology

    Current Research and Scholarly InterestsWe study how neurons are organized into specialized circuits to perform specific functions and how these circuits are assembled during development. We have developed molecular-genetic and viral tools, and are combining them with transcriptomic, proteomic, physiological, and behavioral approaches to study these problems. Topics include: 1) assembly of the fly olfactory circuit; 2) assembly of neural circuits in the mouse brain; 3) organization and function of neural circuits; 4) Tool development.